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Validation
Active and passive microwave remote sensing techniques provide an effective way to observe soil moisture
contents. We validated Advanced Scatterometer (ASCAT) and Advanced Microwave Scanning Radiometer —
Earth Observing System (AMSR-E) sensor products using estimations from nine different stations located in
the Koreanpeninsula, in northeast Asia fromMay 1 to September 30, 2010. The results of the surface soilmoisture
(SSM) products showed a reasonable agreement with the average correlation coefficient (R) values of 0.39, 0.42,
and 0.53 for the National Snow and Ice Data Centre (NSIDC), Vrije Universiteit Amsterdam— National Aeronautics
and Space Administration (VUA-NASA) AMSR-E, and ASCAT SSMdatasets, respectively. The root zone soil moisture
(RZSM) products, derived using the NSIDC soil water index (SWI), the United States Department of Agriculture
(USDA) AMSR-E, and the ASCAT SWI datasets showed relatively high R values of 0.47, 0.72, and 0.75, respectively,
with in situ soil moisture at a depth of 20 cm. In particular, AMSR-E USDA RZSM data show best agreements with
in-situ data at 20 cm, among the four depths (10, 20, 30, and 50 cm). In this study, the ASCAT SSM and SWI
were rescaled based on the porosity and the effective saturation according to soil texture. Renormalized soil
moisture products using three renormalizationmethods: the linear regression correction (REG), average–standard
deviation (μ−σ), and cumulative distribution function (CDF) provided an improvement in biases and RMSEs,with
SSM(SWI) RMSEs of 0.04 (0.02), 0.05 (0.03), and 0.05 (0.03)m3/m3 for REG, μ−σ, and CDFmatching, respectively.
A Taylor diagramwas used to assess the accuracy of four satellite soil moisture products with in situ data on a plot.
Based on these results, ASCAT soil moisture products were potentially proven to bemore appropriate than AMSR-E
products in northeast Asia. Remotely sensed soil moisture datasets from passive (AMSR-E) and active (ASCAT)
sensors are beneficial to operational hydrological investigations and water management activities.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Soil moisture (SM) is an essential variable in the hydrological cycle,
although it occupies only 0.15% of the liquid freshwater on the earth
(Western, Grayson, & Bloschl, 2002). It plays an important role in hy-
drological and meteorological activity, together with weather, climate
predictions, water resources and irrigational management, as well as
hazard analysis. Since 2010, it has been considered an essential climate
variable (ECV) by the World Meteorological Organization (WMO, 2010).
SM has strong spatio-temporal variability, caused by the heterogeneity
of soil properties, land cover, vegetation, and topography, as well as
climate conditions (Brocca, Morbidelli, Melone, & Moramarco, 2007;
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Ryu, Berg, Rodel, & Jackson, 2008; Jacobs, Mohanty, Hsu, & Miller, 2004;
Schmugge, Kustas, Ritchie, Jackson, & Rango, 2002; Sur, Jung, & Choi,
2013; Wagner, Lemoine, Borgeaud, & Rott, 1999). At present, ground-
based SMmeasurement methods, such as neutron probes, time-domain
reflectometry (TDR), and frequency-domain reflectometry (FDR), pro-
vide accuratemoisture contents estimation at point scale.With the grow-
ing need for large-scale observations of the spatial patterns of soil
moisture, there has been an increased focus on the use of remote sensing
techniques (Jackson et al., 2010; Schmugge et al., 2002).

Remote sensing instruments, including aircraft or satellites with
active and passive microwave sensors, have facilitated the measure-
ment of the surface soil moisture for large areas (Njoku & Entekhabi,
1996), including the spatial and temporal characterization of surface
fields (Njoku et al., 2002). Microwave sensors can observe SSM, as the
effects of moisture change on the emissivity or backscattering of the
surface (Njoku, Jackson, Lakshmi, Chan, & Nghiem, 2003). In particular,
satellites using passive or active microwave sensors have been demon-
strated to provide useful retrievals of near-surface soil moisture
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variations, at both regional and global scales (Gruhier et al., 2010;
Jackson, Hsu, & O'Neill, 2002; Wagner, Lemoine, & Rott, 1999). The
inter-comparison and validation of remotely sensed soil moisture
products is a challenging task, because of the differences between sat-
ellite and ground based measurements at both spatial and temporal
scales (Jackson et al., 2010; Jackson, Schmugge, & Engman, 1996).

Since the Scanning Multichannel Microwave Radiometer (SMMR),
the first passive microwave sensor on a satellite, was in operation
from1978 to 1987, there has been a series of passivemicrowave sensors
capable of providing soil moisture data. Most notable are the Tropical
Rainfall Measuring Mission (TRMM) Microwave Imager (TMI; 1997–
present), the Advanced Microwave Scanning Radiometer for the Earth
Observing System (AMSR-E; 2002–2011), WindSat (2003–present),
and the Soil Moisture and Ocean SalinityMission (SMOS; 2009–present).
The most recent instrument is the Advanced Microwave Scanning
Radiometer 2 (AMSR2), which was launched by the Japan Aerospace
Exploration Agency (JAXA) on the Global Change Observation Mission—

Water (GCOM-W) in May 2012.
Active microwave instruments, such as the Scatterometer (SCAT)

onboard European Remote Sensing (ERS-1 and ERS-2; 1991–2000,
1995–2011), and Advanced Scatterometer (ASCAT; 2007–present)
onboard the Meteorological Operational satellite programme-A
(MetOp-A), have carried out SSM measurement (Wagner et al., 2013;
Wagner, Lemoine, Borgeaud, et al., 1999; Wagner, Lemoine, & Rott,
1999). Recently (September 2012), MetOp-B was developed as a joint
undertaking between the European Space Agency (ESA), and the
European Organization for the Exploitation of Meteorological Satellites
(EUMETSAT). The World Meteorological Organization (WMO) has also
increasingly recognized the importance of the use of earth observation
satellites for soil moisture monitoring (WMO, 2013). Furthermore, the
Soil Moisture Active and Passive (SMAP) launch, headed by the NASA,
is planned for January 2015. The SMAP measurement approach uses
two microwave instruments (an L-band synthetic aperture radar and
an L-band radiometer), integrating these data in order tomake high res-
olution (9-km) and high-accuracy measurements. This mission will
provide global soil moisture measurements present at the Earth's land
surfaces and, in particular, will differentiate frozen from thawed land
surfaces (Entekhabi, Njoku, et al., 2010). Moreover, MetOp-C, the third
and final satellite from the MetOp mission, will be launched in 2016,
following MetOp-B, in order to provide continuous measurements of
high-quality data, monitoring long-termweather and climate conditions
until at least 2020. GCOM-W2, the 2nd flight unit of the GCOM-W
program, is also expected to contribute to themonitoring of hydrological
variables in 2016 (available online at http://www.wmo-sat.info/oscar/
satellites). These continual satellite launches for the purpose of soil
moisture observations will enable researchers to accelerate the devel-
opment of remote sensing techniques.

Several studies demonstrated that blending observations taken from
different satellite sensorswere knownas a promising approach in various
fields (Liu et al., 2012; Yilmaz, Crow, Anderson, & Hain, 2012). Various
researches using satellite soil moisture data have also consistently
progressed in terms of applications, such as drought (Bolten, Crow,
Zhan, Jackson, & Reynolds, 2010; Zhang & Jia, 2013), runoff modeling
(Brocca, Melone, Moramarco, Wagner, Naeimi, et al., 2010; Brocca et al.,
2012), and flood forecasting (Bindlish, Crow, & Jackson, 2009). Recent
validation studies have been conducted for satellite SSM retrievals
(AMSR-E, SMOS, and ASCAT) comparing with in situ measurements for
Europe, the United States and Australia (Albergel et al., 2012; Brocca
et al., 2011; Gruhier et al., 2010; Parinussa, Yilmaz, Anderson, Hain, & de
Jeu, 2013; Parrens et al., 2012; Su, Ryu, Young, Western, & Wagner,
2013). A few validation studies of the remotely sensed RZSM also have
been performed (Albergel et al., 2008; Brocca, Melone, Moramarco,
Wagner, & Hasenauer, 2010; Paulik, Dorigo, Wagner, & Kidd, 2014).

In the current study, we evaluate the remotely sensed SSM and RZSM
data, derived fromactive (ASCAT) and passive (AMSR-E)microwave sen-
sors, by comparing it with ground based soil moisture measurements
(10, 20, 30, and 50 cm) in northeast Asia. The three kinds of AMSR-E
soil moisture retrievals were used for validation and inter-comparison:
1) NSIDC AMSR-E Level 3 SSM retrievals from the National Snow and
Ice Data Centre (NSIDC), 2) VUA-NASA AMSR-E developed by the Vrije
Universiteit Amsterdam (VUA) with the National Aeronautics and
Space Administration (NASA), and 3) USDA AMSR-E RZSM data
using VUA-NASA SSM products. Moreover, ASCAT Level 3 SSM and
SWI derived by the Vienna University of Technology (TU-Wien) were
used. Unfortunately, the SMOS satellite data could not be used in this
study, because of unavailability of the soil moisture data for northeast
Asia due to Radio Frequency Interference (RFI) (Kerr et al., 2012;
Leroux, Kerr, Richaume, & Fieuzal, 2013).

Themain purpose of this studywas to assess the accuracy of AMSR-E
and ASCAT satellite-based SSM and RZSM products, and to determine
which sensor was in better agreementwith the ground based soil mois-
ture patterns in northeast Asia. In particular, the satellite soil moisture
products were systematically compared with in situ observations
from nine different sites located in the Korean peninsula from May 1
to September 30, 2010. This research will be helpful to determine the
accuracy of remotely sensed SSM and RZSM retrieval, as well as the
expansion of various applications, such as drought monitoring, flood
forecasting, and hydrological modeling.

2. Description of the study area and dataset

2.1. Ground soil moisture measurement in the study area

Ground soil moisture observations are routinely used to evaluate
remotely sensed SSM and RZSM. In the Korean peninsula, located in
the middle (34–39°N and 126–130°E) of northeast Asia, ground soil
moisture data were periodically collected at four different depths (10,
20, 30, and 50 cm), approximately over twenty sites installed by the
Korea Meteorological Administration (KMA). On the basis of data
quality and availability, eight sites, Suwon, Seosan, Jeonju, Cheorwon,
Chuncheon, Andong, Cheongju, and Jinju, were selected for this valida-
tion study. We also selected an additional site, Seolmalcheon (SMC), op-
erated by the Hydrological Survey Center (HSC), for using the ground soil
moisture (10 cm)measurements (Fig. 1). Table 1 shows themain charac-
teristics of each site: location (latitude, longitude and elevation), climate
(mean annual rainfall, temperature and relative humidity), and physical
characteristics (soil texture and land use). The climate is humid, and
the annual rainfall ranges from 1074 to 2014mm in the northern Korean
peninsula. The heaviest rainfall usually occurs in summer, due to the East
Asian monsoon (Kim, Kripalani, Oh, & Moon, 2002; KMA, 2006). Most of
the soil types are sandy loamand loam, and the land uses are urban, crop-
land, and mixed forest. In this study, the ground measured soil moisture
data were collected by Frequency Domain Reflectometry (FDR), on an
hourly basis. FDR sensor sends an electromagnetic wave along its probes,
andmeasures the frequency of the reflected wave, which varies with the
soil water content. Compared to Time Domain Reflectometry (TDR), FDR
has several advantages. FDR is economical and requires lower electric
power consumption and it enables users to continuously monitor soil
moisture at several remote locations using automated data loggers
(Veldkamp & O'Brien, 2000).

2.2. Advanced Microwave Scanning Radiometer— Earth Observing System
(AMSR-E)

The AMSR-E instrument on board the Aqua satellite provided global
microwave measurements using different bands (56 km for the C band,
38 km for the X band, and 12 km for the Ka band) from May 2002 to
October 2011, with daily ascending (13:30, equatorial local crossing
time) and descending (01:30, equatorial local crossing time) overpasses,
over a swath width of 1445 km (Njoku, 2010; Njoku et al., 2003).
We used different types of AMSR-E soil moisture products
(Table 2): 1. NSIDC's X-band based SSM and RZSM products (Njoku

http://www.wmo-sat.info/oscar/satellites
http://www.wmo-sat.info/oscar/satellites


Fig. 1. Korea Meteorological Organization (KMO) and Seolmacheon validation sites in Korean peninsula (each star mark indicates location of the sites).
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et al., 2003), 2. VUA-NASA's C- and X-band based SSM products (Owe,
De Jeu, & Holmes, 2008), and 3. USDA's C-band based RZSM products
(Bolten & Crow, 2012; Bolten et al., 2010).
Table 1
The characteristics of study areas.

Area Latitude (degree) Longitude (degree) Elevation (m a.s.l) Annual rain

Suwon 37° 16′ N 126° 59′ E 143 m 1470.6 mm
Seosan 36° 46′ N 126° 29′ E 30 m 2141.8 mm
Jeonju 35° 49′ N 127° 09′ E 53 m 1867.5 mm
Cheorwon 38° 08′ N 127° 18′ E 156 m 1581.4 mm
Chuncheon 37° 54′ N 127° 44′ E 79 m 1464.0 mm
Andong 36° 34′ N 128° 42′ N 140 m 1073.8 mm
Cheongju 36° 38′ N 127° 26′ N 58 m 1422.4 mm
Jinju 35° 09′ N 128° 02′ N 29 m 1896.0 mm
Seolmacheon 37° 56′ N 126° 57′ E 269 m 1827.2 mm
The NSIDC soil moisture retrieval algorithm is based on an iterative
multichannel inversion procedure to compare the observed brightness
temperatures, and the computed brightness temperatures. It is mainly
fall (mm) Temperature (°C) Relative humidity (%) Soil texture Land use

12.3 °C 73.5% Sandy loam Urban
11.7 °C 73.8% Loam Cropland
13.6 °C 66.0% Loam Urban
10.1 °C 71.8% Sandy loam Cropland
11.0 °C 70.0% Silt loam Urban
12.3 °C 66.6% Sandy loam Grassland
13.1 °C 65.3% Loam Urban
13.2 °C 67.5% Loamy sand Mixed forest
10.4 °C 73.6% Sandy loam Mixed forest



Table 2
Specifications of the five datasets used in this study.

FDR (In-situ) AMSR-E (NSIDC) AMSR-E (VUA-NASA) AMSR-E (USDA) ASCAT (TU-WIEN)

Observation period Jan. 2008–Dec. 2010 Jun. 2002–Dec. 2010 Jun. 2002–Oct. 2010 Jun. 2002–Dec. 2010 Jan. 2007–
Spatial resolution (grid) Point 38 (25 km) 25 km 25 km 25 km (12.5 km)
Measurement interval Hourly Daily Daily Daily Daily
Overpass time (A, D) – 13:30, 1:30 13:30, 1:30 13:30 11:30, 23:30
Penetration depth
(Sample size*)

10, 20, 30, 50 cm
(3672)

Surface (226)
Root zone (306)

Surface (214) Root zone (304) Surface (278)
Root zone (304)

The sample size* is the mean at each site from the ascending and descending pass.
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affected by the volumetric water content of the soil, vegetation water
content, and soil temperatures. For detailed descriptions of the algo-
rithm, readers referred to Njoku et al. (2003). In response to RFI in the
C-band AMSR-E data across much of North America and East Asia, the
current version of NSIDC AMSR-E soil moisture was applied only to
the X-band (Draper, Walker, Steinle, de Jeu, & Holmes, 2009; Njoku,
Ashcroft, Chan, & Li, 2005). The VUA-NASA soil moisture products
were retrieved using the Land Parameter Retrieval Model (LPRM). The
LPRM is based on a radiative transfer model that looks for geophysical
variables (SSM, vegetationwater content, and soil/canopy temperature)
to the brightness temperatures (Tb). It uses the dual polarized channel
(either C-band 6.9 or X-band 10.6 GHz) for the retrieval of both SSM,
and vegetation water content (VWC) (Owe, De Jeu, & Holmes, 2008;
Owe, De Jeu, & Walker, 2001). The vegetation optical depth is parame-
terized as a function of the microwave polarization difference index
(MPDI):

MPDI ¼ Tb Vð Þ−Tb Hð Þ
� �

= Tb Vð Þ þ Tb Hð Þ
� �

ð1Þ

where Tb(V) and Tb(H) are the vertical and horizontal brightness tempera-
tures, respectively. For frequencies less than 10 GHz, the MPDI has rele-
vance to the canopy and soil emission, and the soil dielectric properties.
The soil emissivity is affected by soil moisture, by the effect of moisture
on the soil dielectric constant (de Jeu, Holmes, Parinussa, & Owe, 2014;
Meesters, De Jeu, & Owe, 2005; Owe et al., 2008). We used an updated
versionof theAMSR-E soilmoisture product derivedby theVUA in collab-
oration with NASA.

The USDA RZSM data was derived by the assimilation of Land Param-
eter Retrieval Model (LPRM) SSM retrievals (C-band, descending time),
into the 2-Layer Palmer Water Balance Model (Bolten & Crow, 2012;
Bolten et al., 2010). This data was downloaded from ftp://hydro1.sci.
gsfc.nasa.gov/data/s4pa/WAOB/LPRM_AMSRE_D_RZSM3.001/. We ex-
tracted the Level 3 soil moisture values directly from the AMSR-E L3
Daily Land data files. The ground based soil moisture data were extracted
at the Aqua satellite overpass time.

2.3. Advanced Scatterometer (ASCAT)

ASCAT is a real-aperture radar sensormeasuring radar backscatter at
C-band in VV polarization, with a radiometric accuracy better than
0.3 dB (Verspeek et al., 2010). It has a sun-synchronous orbit at
817 km, with equator crossing at 21:30 and 09:30. Measurements
occur on both sides of the sub-satellite track; therefore, two 550 km
wide swaths of data are produced, with a spatial resolution of 25 km,
resampled to a 12.5 km grid. Because ASCAT operates continuously,
more than twice of the European Remote-sensing Satellite (ERS)
scatterometer provided coverage (Bartalis et al., 2007). The C-band back-
scattermeasurements are converted to soilmoisture estimates, by apply-
ing the Technische Universität (TU) Wien soil moisture retrieval
algorithm (Naeimi, Scipal, Bartalis, Hasenauer, & Wagner, 2009;
Wagner, Lemoine, Borgeaud, et al., 1999; Wagner, Lemoine, & Rott,
1999). In this study, the ASCAT soil moisture products of the WARP
version 5.5 (release 1.2) of the retrieval algorithm were used (https://
rs.geo.tuwien.ac.at/products).

Wagner, Lemoine, and Rott (1999) proposed a method to calculate
the SSM content from the backscattering measurements at a refer-
ence angle of 40°, using the lowest (dry) and highest (wet) values
over a long period. The SSM content ms is estimated by a processing
step, using

ms ¼
σ0−σ0

dry

σ0
wet−σ0

dry

ð2Þ

where σdry
0 and σwet

0 represent the backscattering values at complete-
ly dry and wet conditions, and σ 0 is the present backscatter mea-
surement. Soil moisture variations are adjusted between the
historically lowest (0%) and highest (100%) values, producing a time se-
ries of relative soil moisture for the topmost centimeters of the soil
(Wagner, Lemoine, & Rott, 1999; Wagner, Naeimi, Scipal, De Jeu, &
Martinez-Fernandez, 2007). In order to estimate the root-zone profile
soil moisture, the semi-empirical approach proposed by Wagner,
Lemoine, and Rott (1999), also called an exponentialfilter, is used to ob-
tain the SWI values from the SSM, ms.

SWI tð Þ ¼

X
i

ms tið Þ � e−
t−ti
T

X
i

e−
t−ti
T

for t ib t: ð3Þ

The SWI at time t,ms(ti) is the SSMestimated from remote sensing at
time ti. T is the characteristic time length, in units of day. In this study,
we used SWI values at T = 1, 5, 10, 15, and 20 to compare with the
root zone soil moisture contents (in situ data at 20, 30, and 50 cm and
USDA AMSR-E) in Table 8. In particular, we compared the in situ data
(20 cm) and SWI values at T = 5 based on maximizing the correlation
with in-situ root zone soil moisture measurements during the growing
seasons (May 1 through September 30, 2010).

3. Methods

The passive (AMSR-E) and the active (ASCAT) sensor soil moisture
products, the C- and X-band observations, represent a layer depth
of 2 cm (Escorihuela, Chanzy, Wigneron, & Kerr, 2010; Naeimi &
Wagner, 2010), were compared with in situ observations at depths
of 10, 20, 30, and 50 cm. ASCAT and AMSR-E soil moisture products
are characterized by different measurement units. AMSR-E products
are expressed as volumetric values (m3m−3 or g/cm3), in absolute
terms. On the other hand, ASCAT products are a relative concept, rep-
resented by a degree of saturation between 0 and 100%. We sug-
gested a simplistic equation to rescale the ASCAT product, based on
the physical concept, the effective saturation (se), of the Green-
Ampt infiltration model (Brooks & Corey, 1964; Rawls, Brakensiek,
& Miller, 1983). To solve for the systematic differences between the
remotely sensed SM and the in situ measurements, the linear

ftp://hydro1.sci.gsfc.nasa.gov/data/s4pa/WAOB/LPRM_AMSRE_D_RZSM3.001/
ftp://hydro1.sci.gsfc.nasa.gov/data/s4pa/WAOB/LPRM_AMSRE_D_RZSM3.001/
https://rs.geo.tuwien.ac.at/products
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regression correction (REG), mean/standard-deviation (μ − σ)
matching, and cumulative distribution function (CDF) matching ap-
proaches are implemented (Albergel et al., 2012; Brocca et al.,
2011; Draper et al., 2009; Jackson et al., 2010; Lacava et al., 2010;
Liu et al., 2011; Su et al., 2013; Scipal, Drusch, & Wagner, 2008).
Fig. 2. Temporal patterns of (a) surface soil moisture (SSM) and (b) root zone soil moisture (RZ
the nine sites in northeast Asia.
3.1. Effective saturation of soil texture classes

The concept of effective saturation (se) (Brooks & Corey, 1964; Rawls
et al., 1983) was employed in order to compare ASCAT soil moisture
values (degree of saturation, %) with AMSR-E soil moisture contents
SM) through AMSR-E, ASCAT and in situ soil moisture from 1May to 30 September 2010 at
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(volumetric units, m3/m3). The ASCAT soil moisture data are relative
values, which are estimated according to the degree of the difference
between the saturated and residual water contents. In this study, the
ASCAT SSM content was rescaled from the degree of saturation (%) to
the volumetric units (m3/m3) by considering the soil porosity
(Wagner et al., 2013). The ASCAT SWI was estimated by factoring in
the residualwater content (θr) aswell, rather than just the total porosity
(η). This is because SWI is one of the RZSM indexes which should con-
sider the residual water content as a characteristic of the root zone soil.

se ¼
θ−θr
η−θr

¼ θ−θr
θe

ð4Þ

where se = effective saturation, θ = soil moisture content, θr = residual
water content, and η= total porosity. The effective saturation (se) is the
ratio of the available moisture, θ− θr, to the maximum possible available
moisture content, η− θr, where η − θr is called the effective porosity θe.
The effective saturation (se) has a range of 0 ≤ se ≤ 1.0, provided
θr ≤ θ≤ η. If the specific area is saturated by rainfall, the in situ soil mois-
ture contentwill becomeequal to the total porosity (η) at that time;while
during completely dry time, the soil moisture becomes the residual water
content (θr). Rawls et al. (1983) showed that the effective porosity (θe)
depends on the soil texture class. We assumed that the ASCAT's histor-
ically lowest and highest values were the residual water content (θr)
and effective saturation (se), respectively. The rescaled ASCAT values
θASCATrescaled

were calculated by:

θASCATrescaled
¼ θASCAToriginal

� θe þ θr
� �

=100 ð5Þ

where θASCAToriginal
is the original ASCAT soil moisture data (degree of

saturation, %), and θASCATrescaled
is the rescaled ASCAT soil moisture data

(volumetric soil moisture contents, m3/m3). The rescaled values were
able to compare between ASCAT and other passive sensor products or
in situ measurements, expressed as volumetric soil moisture contents
(m3/m3). The ASCAT data was rescaled from the percentage of saturation
to the volumetric unit by considering the effective saturation and residual
water contents.We selected a dominant soil texturewithin the each foot-
print from the Korean soil information system (http://soil.rda.go.kr). The
rescaled ASCAT datasets applied by this method can be more accurately
converted than the datasets using just total porosity, though there are
somewhat uncertainties due to the wide range of the effective porosity
and residual water contents, even among the same soil type. Therefore,
we applied the concept of effective saturation to the ASCAT SWI data,
prior to the renormalization methods using the Green and Ampt infiltra-
tion parameters, with typical ranges of η, θr and θe according to the soil
texture classes (Rawls et al., 1983).
Table 3
Statistics of AMSR-E SSM for the NSIDC and VUA-NASA products with in-situ data at 10 cm dep

Area (10 cm) NSIDC SSM (m3/m3)

Average Stdev R Bias

Suwon 0.12 0.02 0.37⁎⁎ −0.09
Seosan 0.09 0.02 0.23⁎⁎ −0.03
Jeonju 0.14 0.02 0.61⁎⁎ −0.07
Cheorwon 0.13 0.01 0.57⁎⁎ −0.08
Chuncheon 0.13 0.01 0.54⁎⁎ 0.00
Cheongju 0.13 0.01 0.13⁎ −0.14
Jinju 0.13 0.02 0.41⁎⁎ 0.02
Andong 0.14 0.02 0.11 0.00
Seolmacheon 0.12 0.01 0.52⁎⁎ −0.09
Average 0.13 0.01 0.39 −0.05

⁎ Indicates significance at 0.05 probability level.
⁎⁎ Indicates significance at 0.01 probability level.
3.2. Comparison metrics

A two-dimensional Taylor diagram (Taylor, 2001) is used to represent
multiple statistics for an inter-comparison between satellite soil moisture
products and in situ data on a plot. The SDV and E are given by:

SDV ¼ stdevSMsatellite

stdevSMin−situ

ð6Þ

E2 ¼ RMSE2−Bias2

stdev2SMin−situ

ð7Þ

E2 ¼ SDV2 þ 1−2 � SDV � R: ð8Þ

SDV is the normalized standard deviation that indicates the ratio
between the satellite data and in situ measurements. In this diagram,
the SDV and R values are shown as a radial distance and an angle respec-
tively, and the in situ observation is displayed as a point on the x axis at
R=1and SDV=1. The centered rootmean square error (E) between the
satellite and in situ soil moisture, which is normalized by stdevSMin−situ

, the
standard deviation of the in situ observations, is the distance to this point.
This diagram has been in previous researches for comparison and for
validation studies related to satellite-based products (Albergel et al.,
2012; de Rosnay et al., 2009; Liu & Xie, 2013).

The three following statistical indexes are used to estimate the satel-
lite soil moisture product accuracy:

Bias ¼
X

SMsatellite−SMin−situ ð9Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

SMsatellite−SMin−situð Þ2
r

ð10Þ

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

X
SMsatellite−SMin−situð Þ

2

X
SMin−situ−SMin−situ

� �2

vuuuut ð11Þ

where Bias is themean value of the differences for each time, and RMSE is
the root mean squared error between the in situ soil moisture measure-
ments, SMin − situ, and the satellite soil moisture product, SMsatellite. R is
the correlation coefficient.

3.3. Renormalization methods: linear regression correction, μ− σ and CDF
matching

Three renormalization strategies are implemented in order to make
inter-comparisons between different satellite soil moisture products.
The first approach, linear regression correction (Brocca et al., 2011;
th.

VUA-NASA SSM (m3/m3)

RMSE Average Stdev R Bias RMSE

0.09 0.40 0.08 0.43⁎⁎ 0.18 0.20
0.06 0.33 0.07 0.60⁎⁎ 0.19 0.20
0.07 0.39 0.08 0.31⁎⁎ 0.18 0.19
0.09 0.35 0.11 0.43⁎⁎ 0.13 0.17
0.02 0.39 0.13 0.19⁎ 0.26 0.29
0.16 0.37 0.08 0.56⁎⁎ 0.10 0.13
0.05 0.38 0.11 0.27⁎⁎ 0.26 0.27
0.06 0.40 0.13 0.43⁎⁎ 0.27 0.29
0.11 0.44 0.11 0.58⁎⁎ 0.22 0.24
0.08 0.38 0.10 0.42 0.20 0.22

http://soil.rda.go.kr


Table 4
Statistics of the VUA AMSR-E data from C- and X-band for according to overpass time (descending/ascending).

Area C-band (m3/m3) X-band (m3/m3)

Ascending Descending Ascending Descending

R Bias RMSE R Bias RMSE R Bias RMSE R Bias RMSE

Suwon 0.43⁎⁎ 0.18 0.20 0.24⁎ 0.21 0.24 0.36⁎ 0.16 0.20 0.10 0.26 0.27
Seosan 0.60⁎⁎ 0.19 0.20 0.29⁎⁎ 0.23 0.24 0.32⁎⁎ 0.18 0.22 0.21⁎ 0.26 0.27
Jeonju 0.31⁎⁎ 0.18 0.19 0.12 0.28 0.31 0.29⁎⁎ 0.12 0.15 0.07 0.23 0.26
Cheorwon 0.43⁎⁎ 0.13 0.17 0.19⁎ 0.27 0.30 0.42⁎⁎ 0.16 0.20 0.13 0.30 0.33
Chuncheon 0.19⁎ 0.26 0.29 0.05 0.33 0.36 0.13 0.25 0.31 0.07 0.35 0.38
Cheongju 0.56⁎⁎ 0.10 0.13 0.31⁎⁎ 0.14 0.18 0.43⁎⁎ 0.07 0.12 0.29⁎⁎ 0.19 0.21
Jinju 0.27⁎⁎ 0.26 0.27 0.04 0.34 0.35 0.24⁎ 0.27 0.30 0.09 0.34 0.37
Andong 0.43⁎⁎ 0.27 0.29 0.11 0.35 0.41 0.24⁎ 0.08 0.14 0.11 0.17 0.21
Seolmacheon 0.58⁎⁎ 0.22 0.24 0.31⁎⁎ 0.27 0.28 0.49⁎⁎ 0.19 0.24 0.27⁎⁎ 0.27 0.29
Average 0.42 0.20 0.22 0.17 0.27 0.30 0.29 0.17 0.21 0.09 0.26 0.29

⁎ Indicates significance at 0.05 probability level.
⁎⁎ Indicates significance at 0.01 probability level.
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Jackson et al., 2010), is based on a linear regression equation between
the satellite and in situ soil moisture values. Standard linear regression
minimizes the squared-differences between satellite-data and in situ
data (i.e., providing the least-square solution thatminimizes the residual).
It provides the match of the satellite data to the in situ data in the least-
square sense, under the assumption that measurement errors are absent
in the in situ data (Su, Ryu, Crow, &Western, 2014). The second average–
standard deviation (μ− σ)matching (Draper et al., 2009; Su et al., 2013),
matches their means and variances using:

ϑ̂s ¼ μ i þ
σ i

σ s
ϑs−μsð Þ ð12Þ

where ϑ̂s =normalized satellite data, μi=mean values of the in situ data,
σi = standard deviations of the in situ data, σs = standard deviations of
the satellite data,ϑs=satellite data, and μs=mean values of the satellite
data. Lastly, the CDF matching (Albergel et al., 2012; Brocca et al., 2011;
Drusch, Wood, & Gao, 2005; Lacava et al., 2010; Liu et al., 2011; Reichle
& Koster, 2004; Scipal et al., 2008; Su et al., 2013) is a non-linear method
used to remove systematic differences between two datasets, and to
match the CDF of the satellite retrievals to the CDF of the in situ soil mois-
ture. The CDF matching approach was applied to each grid individually,
enabling us to efficiently remove the bias and variance error in the local
grid. Liu et al. (2011) applied a piece-wise linear CDF matching, dividing
the CDF curve into 12 segments. In this study, CDF method is applied to
the ASCAT and AMSR-E (NSIDC, VUA-NASA, USDA) products using the
EasyFIT application. This method was used as a data analysis tool,
allowing us to match one satellite data to in-situ data by using the corre-
sponding cumulative distributions, respectively. The user can select the
best CDF model depending on the chosen goodness of fit tests and use
this CDF model to renormalize the investigated satellite data (http://
www.mathwave.com/help/easyfit/index.html).
Table 5
Statistics of AMSR-E RZSM for the NSIDC SWI and USDA RZSM products with in-situ data at 20

Area (20 cm) NSIDC SWI (m3/m3)

Average Stdev R Bias

Suwon 0.12 0.01 0.35⁎⁎ −0.19
Seosan 0.09 0.02 0.32⁎⁎ −0.08
Jeonju 0.14 0.02 0.72⁎⁎ −0.11
Cheorwon 0.13 0.00 0.68⁎⁎ −0.08
Chuncheon 0.13 0.01 0.66⁎⁎ 0.01
Cheongju 0.13 0.01 0.16⁎⁎ 0.19
Jinju 0.13 0.01 0.66⁎⁎ 0.02
Andong 0.14 0.01 0.18⁎⁎ −0.04
Average 0.13 0.01 0.47 −0.04

⁎⁎ Indicates significance at 0.01 probability level.
It should be noted that these renormalization approaches have the
possibility of generating artificial biases and thus become regarded a
sub-optimal works in order to remove the biases (Su et al., 2014;
Yilmaz & Crow, 2013). If certain conditions for datasets were met (mu-
tual linear relationship, independence of errors, and long enough
datasets), it would be optimal to use the triple collocation analysis
(TCA) based rescaling factors and the lagged variable (LV) method in
hydrological assimilation studies (Su et al., 2014; Yilmaz & Crow,
2013). In this study, despite the fact that the three rescaling methods
(REG, μ − σ, and CDF) provide only approximations as the sub-
optimal estimation, they can be used to assess the accuracy of satellite
soil moisture retrievals and inter-compare between different satellite
products, proven by as previous studies (Brocca et al., 2011; Su et al.,
2013).

4. Results and discussion

4.1. Evaluation of AMSR-E surface soil moisture (NSIDC, VUA-NASA)

The twoAMSR-E soilmoisture products developed by the NSIDC and
VUA-NASA were validated using the in situ measurements (10 cm)
provided by the KMA and HSC for the study period of 2010 (May 1 to
September 30), at nine sites located on the Korean peninsula. The
pixel values representing each groundmeasurement site were extracted
from satellite based soil moisture products. Temporal variations of the
SSM for the NSIDC, VUA-NASA and ASCAT products and the RZSM for
the NSIDC SWI, USDA and ASCAT SWI products in situ data are given in
Fig. 2a and b.

Fig. 2a shows that the NSIDC AMSR-E SSM products only reacted
slightly to the rainfall events, compared with the other soil moisture
products and were underestimated. The NSIDC soil moisture showed
mean values ranging from 0.09 to 0.14 m3/m3, and standard deviations
of the soil moisture ranging from 0.01 to 0.02m3/m3. This low temporal
cm depth.

USDA RZSM (m3/m3)

RMSE Average Stdev R Bias RMSE

0.20 0.49 0.04 0.70⁎⁎ 0.17 0.18
0.09 0.47 0.05 0.47⁎⁎ 0.30 0.31
0.11 0.59 0.08 0.79⁎⁎ 0.34 0.34
0.08 0.61 0.06 0.69⁎⁎ 0.40 0.41
0.02 0.47 0.06 0.70⁎⁎ 0.34 0.35
0.19 0.46 0.07 0.88⁎⁎ 0.14 0.15
0.02 0.44 0.05 0.82⁎⁎ 0.32 0.33
0.06 0.40 0.10 0.74⁎⁎ 0.22 0.24
0.10 0.49 0.06 0.72 0.28 0.29

http://www.mathwave.com/help/easyfit/index.html
http://www.mathwave.com/help/easyfit/index.html


Table 8
Correlations of root zone soil moisture between ground based measurements (10, 20, 30,
and 50 cm) and USDA AMSR-E and ASCAT satellite products.

USDA
AMSR-E

ASCAT soil water index

T = 1 T = 5 T = 10 T = 15 T = 20

10 cm
Suwon 0.62⁎⁎ 0.81⁎⁎ 0.66⁎⁎ 0.58⁎⁎ 0.53⁎⁎ 0.49⁎⁎

Seosan 0.50⁎⁎ 0.70⁎⁎ 0.53⁎⁎ 0.44⁎⁎ 0.38⁎⁎ 0.34⁎⁎

Jeonju 0.82⁎⁎ 0.75⁎⁎ 0.82⁎⁎ 0.80⁎⁎ 0.76⁎⁎ 0.72⁎⁎

Cheorwon 0.67⁎⁎ 0.79⁎⁎ 0.77⁎⁎ 0.71⁎⁎ 0.66⁎⁎ 0.63⁎⁎

Chuncheon 0.73⁎⁎ 0.74⁎⁎ 0.84⁎⁎ 0.85⁎⁎ 0.83⁎⁎ 0.81⁎⁎

Cheongju 0.83⁎⁎ 0.68⁎⁎ 0.82⁎⁎ 0.84⁎⁎ 0.83⁎⁎ 0.81⁎⁎

Jinju 0.79⁎⁎ 0.82⁎⁎ 0.81⁎⁎ 0.74⁎⁎ 0.70⁎⁎ 0.66⁎⁎

Andong 0.71⁎⁎ 0.59⁎⁎ 0.65⁎⁎ 0.62⁎⁎ 0.60⁎⁎ 0.58⁎⁎

Seolmacheon 0.61⁎⁎ 0.86⁎⁎ 0.83⁎⁎ 0.72⁎⁎ 0.66⁎⁎ 0.62⁎⁎

Average 0.70 0.75 0.75 0.70 0.66 0.63

20 cm
Suwon 0.70⁎⁎ 0.81⁎⁎ 0.73⁎⁎ 0.63⁎⁎ 0.57⁎⁎ 0.53⁎⁎

Seosan 0.47⁎⁎ 0.66⁎⁎ 0.51⁎⁎ 0.43⁎⁎ 0.38⁎⁎ 0.33⁎⁎

Jeonju 0.79⁎⁎ 0.71⁎⁎ 0.77⁎⁎ 0.75⁎⁎ 0.71⁎⁎ 0.67⁎⁎

Cheorwon 0.69⁎⁎ 0.76⁎⁎ 0.80⁎⁎ 0.76⁎⁎ 0.72⁎⁎ 0.69⁎⁎

Chuncheon 0.70⁎⁎ 0.72⁎⁎ 0.85⁎⁎ 0.87⁎⁎ 0.86⁎⁎ 0.85⁎⁎

Cheongju 0.88⁎⁎ 0.62⁎⁎ 0.80⁎⁎ 0.84⁎⁎ 0.83⁎⁎ 0.81⁎⁎

Jinju 0.82⁎⁎ 0.77⁎⁎ 0.84⁎⁎ 0.82⁎⁎ 0.79⁎⁎ 0.77⁎⁎

Andong 0.74⁎⁎ 0.58⁎⁎ 0.67⁎⁎ 0.66⁎⁎ 0.65⁎⁎ 0.64⁎⁎

Average 0.72 0.70 0.75 0.72 0.69 0.66

30 cm
Suwon 0.70⁎⁎ 0.82⁎⁎ 0.70⁎⁎ 0.58⁎⁎ 0.52⁎⁎ 0.47⁎⁎

Table 7
Comparison between in-situ data at 20 cm depth and the rescaled ASCAT SWI products
(T = 5) from May 1 to September 30.

Area In-situ (m3/m3) rescaled ASCAT Soil Water Index (m3/m3)

Average Stdev Average Stdev R Bias RMSE

Suwon 0.31 0.01 0.24 0.04 0.73⁎⁎ −0.08 0.08
Seosan 0.17 0.05 0.17 0.06 0.51⁎⁎ 0.00 0.05
Jeonju 0.25 0.03 0.22 0.05 0.77⁎⁎ −0.03 0.04
Cheorwon 0.21 0.03 0.35 0.03 0.80⁎⁎ 0.14 0.14
Chuncheon 0.14 0.02 0.35 0.03 0.85⁎⁎ 0.21 0.21
Cheongju 0.32 0.04 0.24 0.04 0.80⁎⁎ −0.07 0.08
Jinju 0.12 0.02 0.23 0.05 0.84⁎⁎ 0.12 0.12
Andong 0.18 0.05 0.32 0.03 0.67⁎⁎ 0.12 0.13
Average 0.21 0.03 0.27 0.04 0.75 0.06 0.11

⁎⁎ Indicates significance at 0.01 probability level.
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variability and underestimated patterns of the NSIDC soil moisture had
been previously found by several NSIDC AMSR-E validation studies
(Choi, 2012; Gruhier et al., 2008; Jackson et al., 2010; Wagner et al.,
2007). In particular, these results corresponded with those of Choi
(2012), which validated the AMSR-E product using ground based mea-
surements and the Common Land Model (CLM), for two major land
cover types in Korea. The correlation coefficients between the NSIDC
products and in situ measurement values ranged from 0.11 to 0.61
(average = 0.39). Table 3 shows that biases ranged from−0.14 to 0.02
(average = −0.05 m3/m3), while the RMSE ranged from 0.02 to 0.16
(average = 0.08 m3/m3).

We evaluated the accuracy of the VUA-NASA soil moisture products
(C- and X-band), by comparing themwith ground based measurements,
according to ascending/descending pass. It is worthy of note that the
C-band VUA-NASA data have higher correlation than the X-band data
for all of the sites (Table 4). This implies that the C-band soil moisture
products were more reliable than the X-band products, which are fur-
ther recommended for use in northeast Asia, where RFI was observed
(Njoku et al., 2005). It is also worth noting that the ascending AMSR-E
data had good agreement with the ground-based measurements com-
pared with the descending data, regardless of the band type in this
study (Table 4). These results supported the findings of Loew, Holmes,
& De Jeu (2009) and Brocca et al. (2011). Brocca et al. (2011) pointed
out that ascending AMSR-E data provided higher correlations with
site-specific data in Europe because the ascending pass (day-time) data
had the vegetation transparent effects by high temperatures during the
day.

Considering the results of Fig. 2a, the VUA-NASA soil moisture
products (C-band and descending pass) clearly responded to rainfall
events and showed reasonable agreement with the ground-based mea-
surements in contrast to the NSIDC soil moisture products. In these
graphs,we can see the temporal variations, as the values increasedduring
rainfall and decreased after rainfall events. While the in situ soil moisture
ranged from 0.11 to 0.27 m3/m3, the VUA-NASA soil moisture showed
higher average values, ranging from 0.33 to 0.44 m3/m3 (Table 3). The
standard deviations of the in situ soil moisture measurements ranged
from 0.03 to 0.05 m3/m3. The VUA-NASA products had a higher standard
deviation, ranging from 0.07 to 0.13 m3/m3. The correlation coefficients
ranged from 0.19 to 0.60 (average: 0.42), the biases ranged from 0.10
to 0.27 (0.20 m3/m3), and the RMSE ranged from 0.13 to 0.29 (average:
0.22 m3/m3).

These results match up with several recent studies that VUA-NASA
products were better correlated with ground soil moisture measure-
ments than NSIDC products, and implied that AMSR-E data was suit-
ed to VUA-NASA soil moisture retrieval, and that long wavelengths
(C-band) penetrated deeper into vegetation and soil than short wave-
lengths (X-band) (Choi, 2012; Draper et al., 2009; Rudiger et al., 2009;
Wagner et al., 2007). In comparison with previous studies, the correla-
tion between the VUA-NASA soil moisture and in situmeasurements in
Table 6
Comparison between (a) in-situdata at 10 cmdepth and the rescaled ASCAT SSMproducts
from May 1 to September 30.

Area In-situ (m3/m3) rescaled ASCAT surface soil moisture (m3/m3)

Average Stdev Average Stdev R Bias RMSE

Suwon 0.21 0.03 0.19 0.07 0.64⁎⁎ 0.02 0.06
Seosan 0.13 0.05 0.14 0.08 0.62⁎⁎ 0.01 0.06
Jeonju 0.21 0.03 0.19 0.08 0.54⁎⁎ −0.02 0.07
Cheorwon 0.21 0.04 0.30 0.05 0.51⁎⁎ 0.09 0.10
Chuncheon 0.12 0.03 0.34 0.06 0.48⁎⁎ 0.21 0.22
Cheongju 0.26 0.08 0.21 0.07 0.41⁎⁎ −0.05 0.09
Jinju 0.11 0.05 0.20 0.07 0.44⁎⁎ 0.08 0.11
Andong 0.13 0.06 0.28 0.05 0.42⁎⁎ 0.15 0.16
Seolmacheon 0.22 0.05 0.25 0.06 0.70⁎⁎ 0.03 0.06
Average 0.18 0.05 0.23 0.07 0.53 0.06 0.10

⁎⁎ Indicates significance at 0.01 probability level.
this study areawas lower than for other regions, such asAmerica (Jackson
et al., 2010), Europe (Wagner et al., 2007), West Africa (Gruhier et al.,
2010) and Australia (Draper et al., 2009; Su et al., 2013). These results
suggest that northeast Asia including the Korean peninsula ismore affect-
ed by RFI as well as relatively heterogeneous land cover within the foot-
print than these validated sites (Choi, 2012).
Seosan 0.37⁎⁎ 0.53⁎⁎ 0.36⁎⁎ 0.30⁎⁎ 0.27⁎⁎ 0.24⁎⁎

Jeonju 0.64⁎⁎ 0.68⁎⁎ 0.65⁎⁎ 0.61⁎⁎ 0.56⁎⁎ 0.52⁎⁎

Cheorwon 0.63⁎⁎ 0.62⁎⁎ 0.77⁎⁎ 0.76⁎⁎ 0.74⁎⁎ 0.72⁎⁎

Chuncheon 0.51⁎⁎ 0.52⁎⁎ 0.61⁎⁎ 0.57⁎⁎ 0.53⁎⁎ 0.49⁎⁎

Cheongju 0.80⁎⁎ 0.35⁎⁎ 0.64⁎⁎ 0.78⁎⁎ 0.83⁎⁎ 0.84⁎⁎

Jinju 0.80⁎⁎ 0.71⁎⁎ 0.80⁎⁎ 0.79⁎⁎ 0.77⁎⁎ 0.75⁎⁎

Andong 0.68⁎⁎ 0.51⁎⁎ 0.58⁎⁎ 0.60⁎⁎ 0.62⁎⁎ 0.63⁎⁎

Total 0.64 0.59 0.64 0.62 0.61 0.58

50 cm
Suwon 0.61⁎⁎ 0.64⁎⁎ 0.49⁎⁎ 0.37⁎⁎ 0.31⁎⁎ 0.27⁎⁎

Seosan 0.45⁎⁎ 0.59⁎⁎ 0.40⁎⁎ 0.32⁎⁎ 0.28⁎⁎ 0.23⁎⁎

Jeonju −0.23 −0.05 −0.11 −0.12 −0.09 −0.06
Cheorwon 0.58⁎⁎ 0.58⁎⁎ 0.74⁎⁎ 0.76⁎⁎ 0.76⁎⁎ 0.75⁎⁎

Chuncheon 0.60⁎⁎ 0.53⁎⁎ 0.74⁎⁎ 0.81⁎⁎ 0.83⁎⁎ 0.83⁎⁎

Cheongju 0.78⁎⁎ 0.69⁎⁎ 0.79⁎⁎ 0.81⁎⁎ 0.81⁎⁎ 0.80⁎⁎

Jinju 0.71⁎⁎ 0.69⁎⁎ 0.71⁎⁎ 0.69⁎⁎ 0.66⁎⁎ 0.64⁎⁎

Andong 0.66⁎⁎ 0.37⁎⁎ 0.49⁎⁎ 0.57⁎⁎ 0.64⁎⁎ 0.67⁎⁎

Average 0.52 0.51 0.53 0.53 0.53 0.52

⁎⁎ Indicates significance at 0.01 probability level.



Fig. 3. Comparison results of surface soil moisture (SSM) retrievals of R and RMSE values at nine sites.
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4.2. Evaluation of AMSR-E root zone soil moisture (NSIDC SWI, USDA)

The NSIDC AMSR-E RZSM products were calculated using the ex-
ponential filter method in order to compare other RZSM products
(USDA and ASCAT SWI). The NSIDC SWI showed that the average and
standard deviation values ranged from 0.09 to 0.14 m3/m3, and 0.00
to 0.02 m3/m3, respectively (Table 5). The correlation coefficients be-
tween these products and the in situ measurement values (20 cm)
ranged from 0.16 to 0.72 (average: 0.47). The NSIDC SWI products
had higher correlation values than the NSIDC SSM products (0.39) for
all of the sites, with the exception of Suwon. These results are slightly
better than a previous study that was performed in Europe (Brocca
et al., 2011), which showed that the average R values of the NSIDC
SWI products were equal to 0.45 and 0.20 with in situ measurements
at 5 cm (surface) and 10–30 cm (root zone), although modified by the
application of CDF matching method, respectively.

The AMSR-E RZSM is derived by the USDA, via the assimilation of
VUA-NASA soil moisture retrievals into the 2-Layer Palmer Water
Balance Model, using the Ensemble Kalman filter (EnKF). We executed
a correlation analysis between the in situ soil moisture (10, 20, 30, and
50 cm) and USDA RZSM, in order to confirm which depth has the
highest correlation coefficients. As this dataset was designed to only
use the C-band soil moisture at a descending overpass time (1:30 am),
in situ measurements were also extracted at the same time. Fig. 2b
shows that the USDA products overestimate the soil moisture, and
have a large bias, as compared to the in situ measurements. The biases
Fig. 4. Comparison results of root zone soil moisture (RZ
ranged from 0.14 to 0.40 m3/m3 (average: 0.28 m3/m3), and the RMSE
ranged from 0.15 to 0.41 (average: 0.29) in Table 5. TheUSDA soil mois-
ture showed that the average and standard deviations values ranged
from 0.40 to 0.61 m3/m3, and 0.04 to 0.10 m3/m3, respectively. Table 8
shows the correlation coefficient values between the USDA RZSM and
the in situ soil moisture measurements at nine sites. The average R
values were equal to 0.70, 0.72, 0.64 and 0.52, at 10, 20, 30, and 50 cm
depth, respectively. In particular, the R values at 20 cm depth ranged
from 0.47 to 0.88 (average: 0.72), showing the highest R-values of all
of the AMSR-E products.Most of the study sites had good correlation co-
efficients at depths of 10 and 20 cm. The highest R values (r= 0.83 and
0.88) were obtained at 10 and 20 cm depths in the Cheongju site.
Conversely, the lowest R values (r = 0.37 and 0.45) were obtained at
30 and 50 cm depths in Seosan site. This implied that there were differ-
ences in correlation coefficient values of the USDA RZSM products ac-
cording to the depths of the in situ measurements and land surface
characteristics. Furthermore, it can be inferred that theUSDARZSMprod-
ucts best correlate with the in-situmeasurements at about 20 cm depths.

4.3. Evaluation of ASCAT surface and root zone soil moisture products

The ASCAT surface soil moisture (SSM) was validated for nine sites
in Korea. Fig. 2a shows the time series of ASCAT SSM products versus
the two AMSR-E and ground based data at a 10 cm depth for all of the
sites. Notwithstanding the high temporal variability of the SSM, the
ASCAT products corresponded more accurately with the temporal
SM) retrievals of R and RMSE values at eight sites.
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patterns of the in situmeasurements than did theAMSR-E SSMproducts
during the growing season. The ASCAT products showed that the aver-
age and standard deviations values ranged from0.14 to 0.34m3/m3, and
0.05 to 0.08 m3/m3, respectively (Table 6). Correlation coefficients
between these products and the in situ measurement values (10 cm)
ranged from 0.41 to 0.70 (average: 0.53). The ASCAT SSM products
had higher average correlation values than did the two AMSR-E SSM
products (NSIDC: 0.39, VUA-NASA: 0.42). These results correspond
with previous studies (Brocca et al., 2011; Liu et al., 2011). The ASCAT
soil water index (SWI) is one of the RZSM values (Brocca et al., 2011;
Naeimi &Wagner, 2010).We applied the concept of effective saturation
to the ASCAT SWI products according to soil texture. The time series in
Fig. 2b show that the temporal patterns of the rescaled ASCAT SWI are
more similar to those of the in situ measurements, than the AMSR-E
products. Fig. 4 shows a comparison between the groundmeasurements
at 20 cm depth and the ASCAT SWI products with the average, standard
deviation, bias and RMSE. The rescaled ASCAT SWI values corresponded
Fig. 5. Taylor diagramof surface soilmoisture products (SSM) illustrating the statistics of compa
correction (REG), (c) average–standard-deviation (μ − σ) and (d) cumulative distribution fun
with the ground measurement as the average values of the in situ
soil moisture measurements for the nine sites were 0.21 m3/m3

during the growing season and the average value for the ASCAT
SWI is 0.27 m3/m3. The average correlation coefficient value was
equal to 0.75. The biases ranged from −0.08 to 0.21 (0.06 m3/m3),
and the RMSE ranged from 0.04 to 0.21 (0.11 m3/m3), as shown in
Table 7. These results indicate that the rescaled ASCAT product is
more accurate than the AMSR-E products, nearly to the target value of
0.04 m3/m3, which was the numerical goal of the SMAP mission
(Entekhabi, Reichle, Koster, & Crow, 2010). It is worthy to note that
the ASCAT SWI values should be evaluated so as to determine an effec-
tive saturation concept with a renormalization method, as has been
used in several previous studies (Brocca et al., 2011; Draper et al.,
2009; Su et al., 2013).

We also analyzed the correlation values between the in situ soil
moisture measurements (10, 20, 30, and 50 cm) and the ASCAT SWI
data, according to the characteristic time length, T (Table 8). Generally,
rison between according to three renormalizingmethods, (a) original, (b) linear regression
ction (CDF).
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the ASCAT SWI has relatively good correlation coefficients with the
in situ RZSM at 10 and 20 cm, comparedwith 30 and 50 cm. The highest
average R-value (0.75) at T= 5 days was obtained for the depths of 10
and 20 cm. This may be due to the length of time (T), which connotes
the infiltration time. There are horizontal variations in the amount of
soil moisture contents after rainfall events, which are caused by the
differences in infiltration velocity, according to the type of soil texture.
The differences in R-values among the nine study sites were found in
Table 8. In particular, the Suwon and Seosan sites had the lowest
R-values at T = 10, 15 and 20 days for the depth of 10 cm. This may
be partly explained by the spatial heterogeneity of land cover within
the foot-print compared to other sites (Fig. 1). Dominant land cover
types in pixel may be the cause of the problematic retrieval results
(Lakhankar, Ghedira, Temimi, Azar, & Khanbilvardi, 2009; Loew,
2008; Van de Griend, Wigneron, & Waldteufel, 2003). Loew (2008)
mentioned that the quality of the soil moisture retrievals was influ-
enced by the spatial heterogeneity within a resolution pixel, especially
concerning vegetation, urban, and open water surfaces, and might ulti-
mately result in significantly biased soil moisture retrievals.
Fig. 6. Taylor diagram of root zone soil moisture products (RZSM) illustrating the statistics of c
gression correction (REG), (c) average–standard-deviation (μ − σ) and (d) cumulative distrib
4.4. Inter-comparison of satellite soil moisture retrievals

Fig. 2 shows the temporal profiles of the satellite based soil moisture
products (SSM: NSIDC, VUA-NASA, and ASCAT, RZSM: NSIDC SWI,
USDA, andASCAT SWI) for the nine different locations. All of the products
responded to the multiple rainfall events during the growing season in
2010. However, there were significant differences between the three
satellite-based SSM datasets. The R-values of the satellite-based SSM
datasets are in the range of 0.11–0.61, 0.19–0.60 and 0.41–0.70, with
average values of 0.39, 0.42, and 0.53, for the NSIDC, VUA-NASA AMSR-
E and ASCAT datasets, respectively (Fig. 3a). The ASCAT had the highest
mean correlation (R = 0.53), compared to the other satellite datasets.
Fig. 3b shows the comparison of the RMSE between the satellite soil
moisture products (AMSR-E and ASCAT). The RMSE of the modified
datasets are in the range of 0.02–0.16, 0.13–0.29, and 0.06–0.22 m3/m3,
with average values of 0.08, 0.22, and 0.10 m3/m3, for the NSIDC,
VUA-NASA AMSR-E and ASCAT datasets, respectively. NSIDC AMSR-E
had lowest RMSE values, followed by the ASCAT, and VUA-NASA
AMSR-E, in spite of the locational differences. The ASCAT products
omparison between according to three renormalizing methods, (a) original, (b) linear re-
ution function (CDF).
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were applied with the concept of soil porosity (Wagner et al., 2013).
These results are different than the results of several previous studies,
in that the RMSE between the VUA-NASA and in situ data was smaller
than the RMSE between the NSIDC and in situ data (Choi, 2012;
Wagner et al., 2007). However, these findings are similar to those of
Gruhier et al. (2010), as they showed that the RMSE of the NSIDC
data (0.05 m3/m3) was smaller than that of the VUA-NASA data
(0.06 m3/m3) during monsoon seasons; however, the RMSE of the
NSIDC data (0.07 m3/m3) was bigger than that of the VUA-NASA data
(0.02 m3/m3) during dry seasons.

Fig. 4a shows that R-values of satellite based RZSM datasets. These
average values were 0.47, 0.72, and 0.75, for the NSIDC SWI, USDA
AMSR-E and ASCAT SWI datasets, respectively. The RMSE of these
datasets ranged from 0.02–0.20, 0.15–0.41, and 0.04–0.21 m3/m3, with
the average values of 0.10, 0.29, and 0.11 m3/m3 (Fig. 4b). The ASCAT
also has the highest mean correlation (R = 0.75), compared to the
other satellite datasets. The results of the comparisons for the following
sets were modified by the application of renormalization approaches,
REG, μ − σ, and CDF matching, and were subsequently categorized
according to satellite products (SSM and RZSM) 1) NSIDC, VUA-NASA
AMSR-E, and ASCAT SSM, and 2) NSIDC SWI, USDA AMSR-E, and
ASCAT SWI products. There are several causes of various systematic
differences (Bias, RMSE). These errors may be caused due to the fact
that the microwave sensor on board the satellite can detect only the
soil moisture in the top soil layer (2–5 cm), and satellite-derived soil
moisture contents are easily affected by various atmospheric forcing.
Furthermore, the satellite data represents the spatial average value,
while the in situ measurement data reflect sites that were monitored
at certain depths (Draper et al., 2009).

Fig. 5 shows four Taylor diagrams that illustrate the statistics for the
comparison between NSIDC, VUA-NASA, and ASCAT SSM data and
ground based measurement data (10 cm) for the original and three
renormalization methods, REG, μ − σ, and CDF matching. On average,
for the nine sites, the R-values of the three renormalized satellite soil
moisture products were 0.39, 0.42 and 0.53 (REG and μ − σ) and 0.38,
0.43, and 0.55 (CDF), for NSIDC, VUA-NASAAMSR-E, and ASCAT datasets,
respectively. All of the symbols representing the NSIDC data (red dots)
are located just below the SDV value of 1 (violet dotted line in Fig. 5a).
This implies that the temporal variability of the NSIDC data is lower,
than that of the other satellite products. Fig. 5b shows the Taylor diagram
representing REG-based rescaling. As seen in this figure, the average SDV
values modified from 0.32, 2.43, and 1.56 to 0.36, 0.42, and 0.53 m3/m3

for all of the products. The REG method showed SDV values less than
one for all of the products, drawing a semicircle. The ASCAT data
(Green dots) presents relatively close to the x axis at R = 1 and
SDV=1, followed byVUA-NASA, andNSIDC. These obtained SDV values
were equal to R-values. The results using the average–standard devia-
tion (μ − σ) matching method showed that all of the SDV values were
equal to 1 (Fig. 5c). Therefore, this method enables us to compare
three satellite products only considering correlation coefficients.
Fig. 5d shows the dispersion of statistics, which were modified using
the CDF matching method. This diagram depicts the fact that most of
the data points are close to the SDV value of 1, except for some of the
NSIDC products.

The four Taylor diagrams of the RZSM products, which illustrate the
statistics of the comparison between NSIDC SWI, USDA, and ASCAT SWI
data and ground-based measurement data (20 cm) for the original and
three renormalization methods (REG, μ − σ, and CDF matching) are
shown in Fig. 6. In general, the RZSM correlations had better results
than the SSMcorrelations. TheR-values of the three satellite soilmoisture
products were 0.47, 0.72 and 0.75 for the NSIDC SWI, USDA, and
ASCAT SWI datasets, respectively. Throughout the three renormalization
methods, the RMSE values improved from 0.10, 0.29, and 0.11 to 0.03,
0.02, and 0.02 m3/m3 (REG), 0.03, 0.03, and 0.02 m3/m3 (μ − σ), and
0.04, 0.03, and 0.02 m3/m3 (CDF), respectively. As seen in Fig. 6c, the
μ − σ method showed that all satellite RZSM products followed the
curve, SDV= 1 (violet dotted line). The CDF matching method was able
to acquire the SDV values of three RZSM products close to 1 (Fig. 6d).
Through four diagrams, we can assess that the ASCAT SWI and USDA
RZSM products outperform the NSIDC SWI products. Furthermore, the
ASCAT SWI data are more accurate than USDA RZSM data in Fig. 6d.
Basically, the result may be due to the fine resolution of the 0.125° grid
of the ASCAT products, compared to the AMSR-E products, which have
a 0.25° grid, and the application of the exponential filter which allows
satellite products to be comparable with in situ observations of near-
surface soil moisture. Subsequent research is required not only to assess
the applicability of ASCAT with AMSR2 for the different regions in East
Asia, but also to validate and calibrate upcoming SMAP products.

5. Summary and conclusions

Several soil moisture datasets from active/passive microwave
sensors have been provided to users for diverse public purposes. The
validation and evaluation of these products are required on both a global
and local scale. In this study, active (ASCAT) and passive (AMSR-E) sensor
productswere estimated fromnine stations located in theKorea peninsu-
la, in northeast Asia. Through this validation study, we were able to con-
clude that ASCAT, a type of active microwave sensor, outperformed the
three AMSR-E products (NSIDC, VUA-NASA and USDA) in terms of both
SSM and RZSM products in northeast Asia. We rescaled ASCAT products
considering the concept of effective saturation. In addition, the AMSR-E
USDA RZSM showed characteristics related to soil texture. Through the
comparison of soil moisture retrievals with three renormalization
methods (REG, μ − σ and CDF matching) using a Taylor diagram, the
ASCAT satellite datasets proved their reliability in terms of both SSM
and RZSM. This study would play an important role in assessing global
satellite-based soil moisture under the circumstances, where other
major satellite soil moisture products have limitations such as the Soil
Moisture Ocean Salinity (SMOS) due to the RFI in northeast Asia, and
the AMSR-E instrument onboard the Aqua satellite, which stopped pro-
ducing data after October 2011, due to an antenna problem. Furthermore,
such researchmight lead to a better understanding of operational hydro-
logical investigations and water management activities, as well as in
validating and estimating remotely sensed soilmoisture products derived
by Metop-B, AMSR2, and the upcoming SMAP mission.
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