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The AdvancedMicrowave Scanning Radiometer 2 (AMSR2), a follow-upmicrowave sensor to the AMSR for Earth
Observing System (AMSR-E), was launched on the Global Change Observation Mission 1 – Water (GCOM-W1)
satellite inMay 2012. It is as yet unclear if instrumental improvements in AMSR2 over AMSR-E have led to better
soil moisture (SM) estimates, especially since there is no overlapping period of data between the sensors. This
study focuses on comparing the results of AMSR2 and AMSR-E SM over Australia, distinguishing four Köppen cli-
mate zones to determine if AMSR2 is better than AMSR-E. This is achieved by selecting two year-long compara-
tive time periods from the operating periods of AMSR-E and AMSR2, based on their statistical similarities in
modeled SM as a proxy, using Modern Era Retrospective-analysis for Research and Applications-Land (MERRA-
L). The AMSR2 and AMSR-E C- and X-band SM derived from the Land Parameter Retrieval Model (LPRM) was
evaluated. Both AMSR2 C- and X-band SM products were found to show similar temporal patterns and spatial
agreement with AMSR-E C- and X-band SM, supported by unbiased root mean square difference (ubRMSD)
and R-valueswithMERRA-L SM, respectively. Using lag-based instrumental variable analysis to estimate the ran-
dom error component of SM retrievals, the noise-to-signal ratios in AMSR2 X-band SMwere found to be slightly
higher than their AMSR-E counterparts. The improvements in AMSR2, such as the superior radiometric sensitiv-
ity and spatial resolution, have therefore not led to statistically significant differences in performance for LPRM
retrievals at 1/2° × 1/2° grid resolution, when compared with AMSR-E. However, similarities in the metrics for
AMSR2 and AMSR-E SM suggest that AMSR2 provides a valuable continuation to AMSR-E.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Space-borne microwave remote sensors have provided the most
practical means of monitoring the spatial variability of soil moisture
(SM) in the global hydrologic cycle and understanding hydrological
andmeteorological processes over a diverse range of land surface condi-
tions (Schmugge et al., 2002). Among these sensors, the Advanced Mi-
crowave Scanning Radiometer for Earth Observing System (AMSR-E)
sensor onboard the Aqua satellite provided valuable SM observations
between June 2002 and October 2011 (Njoku et al., 2003). The AMSR-
E ceased normal operation on October 2011, due to a problem with
the mechanical scanning of its antenna, and was replaced by the Ad-
vanced Microwave Scanning Radiometer 2 (AMSR2) launched on the
Global Change Observation Mission 1 – Water (GCOM-W1) satellite
(Okuyama and Imaoka, 2015). With a similar design to AMSR-E, the
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AMSR2 sensor continues the AMSR-E measurements from May 2012.
Compared to AMSR-E, AMSR2 has an improved calibration system, a
larger passive microwave antenna to achieve better spatial resolution,
and better radiometric sensitivity with 12-bit quantization. Also,
AMSR2 has a C-band frequency (7.3 GHz) channel in addition to the
original C-band frequency (6.9 GHz) to mitigate radio-frequency inter-
ference (RFI) effects that the original C-band frequency (6.9 GHz) expe-
rienced in certain regions (Njoku et al., 2005).

The AMSR-E SMproducts have been used in awide range of applica-
tions: hydrological modeling (Brocca et al., 2010; Wanders et al., 2014,
Alvarez-Garreton et al., 2015), landslide risk mapping (Ray et al.,
2010), agricultural drought monitoring crop production decision sup-
port (Bolten et al., 2009, 2010) and drought index (Choi et al., 2013),
land surface modeling for root-zone SM estimation (Draper et al.,
2012), rainfall estimation (Crow et al., 2011), and the construction of
long-term climate records of soil moisture (de Jeu et al., 2012; Wagner
et al., 2012). It is also expected that passive microwave products can
be used in the study of energy balance modeling (Crow & Wood,
2002), land-atmosphere coupling (Miralles et al., 2014; Jung et al.,
2010), and ecohydrology (Turner et al., 2003). These applications
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could be tested with AMSR-E data owing to its long data record and its
extensive validation (e.g., Champagne et al., 2010; Cho et al., 2015b;
Draper et al., 2009; Gruhier et al., 2010; Jackson et al., 2010; Rossato et
al., 2011; Su et al., 2013a, 2013b; Zeng et al., 2015). Given their instru-
mental similarities, the applications of AMSR2 are expected to be closely
related to the existing and future studies involving AMSR-E. As the data
stream of AMSR-E is now continued by AMSR2, it is necessary to ask
how the research studieswith AMSR-E SM can be interpreted in relation
to the new instrument. Further, how do instrumental improvements to
themicrowave radiometer translate into improvements in the retrieved
SM data? There exists a known issue of a maximum calibration differ-
ence up 5 K collected by AMSR2, compared to other existingmicrowave
satellite sensors (Tropical Rainfall MeasuringMission Microwave Imag-
er (TMI) and AMSR-E)with similar instrument specifications (Okuyama
and Imaoka, 2015). Although some possible reasons for these differ-
ences, including the reflector loss and receiver non-linearity, have
been suggested by Okuyama and Imaoka (2015) and Imaoka et al.
(2010), investigation of the underlying causes is still underway, and
consequently the influence of the calibration differences on retrieved
SM estimates remains uncertain. As the differences in Tb are somewhat
unknown between the two sensors, a check of the consistency between
the SM datasets could help understand the Tb issues better. Within this
context, an alternative goal is to quantify the relative quality or errors
between the SM products derived from the two instruments using
same SM retrieval algorithm. This is the focus of our study. This ap-
proach is distinct from the recent studies by various authors, including
Kim et al. (2015), who compared two AMSR2 X-band products created
by the Japan Aerospace Exploration Agency (JAXA) algorithm and the
Land Parameter RetrievalModel (LPRM) developed by the VU Universi-
ty Amsterdamwith the National Aeronautics and Space Administration
(NASA), Cho et al. (2015a)who evaluated AMSR2 SM using in situmea-
surements over the Korean peninsula, and Parinussa et al. (2015) who
related the differences between AMSR-E and AMSR2 observed bright-
ness temperature to different calibration procedures and small differ-
ences in sensor specifications.

This work focuses on comparison between AMSR-E and AMSR2-re-
trieved SM products derived by the Land Parameter Retrieval Model
(LPRM) (Owe et al., 2008; Parinussa et al., 2015), although readers are
referred to a recent reviewbyMladenova et al. (2014) for alternative re-
trieval algorithms. The LPRM algorithm, which is based on a forward ra-
diative transfer model, uses both horizontal and vertical polarization of
the C- or X-band observations to retrieve surface SM, and the Ka-band
vertical polarized observation for the land surface temperature estima-
tion. The LPRM delivers two products based on the C- (6.9 GHz) and X-
(10.7 GHz) bands from AMSR-E, compared to three products from
AMSR2, owing to the additional C-band (7.3 GHz) channel. This algo-
rithmic consistency allows products derived from individual bands to
be compared separately in this work. However, direct spatiotemporal
point-to-point comparisons between AMSR-E and AMSR2 SM are not
possible without temporal overlap between the two sensors. In order
to overcome this obstacle, we propose the use of model-simulated SM
as a proxy to identify periods during which the SM dynamics are statis-
tically indistinguishable. The model SM dataset from NASA's MERRA-L
(Modern Era Retrospective-analysis for Research and Applications-
Land) re-analysis (Reichle et al., 2011) is used for this purpose.
MERRA-L SM data are suitable due to remarkable performance globally
in comparison with other reanalysis products (Albergel et al., 2013b;
Al-Yaari et al., 2014; Yi et al., 2011). Section 2.2 describes the use the
MERRA-L SM in this work more details.

Our study focuses on the entire Australian continent, in order to in-
crease the statistical power of our analyses, but considers four Köppen
climate zones separately: temperate with dry summer (denoted by
Te-D hereafter), arid (Ard), tropical (Trp), and temperate without dry
summer (Te-ND). Australia has complete coverage of high-quality mi-
crowave data where it is almost unaffected by RFI (Njoku et al., 2003).
At the same time, the region provides several distinctive climate zones
and land surface characteristics to enable researchers to evaluate re-
motely sensed SM products over clearly classified spatial conditions.
The differences between satellite and model SM are firstly examined
during these statistically similar time periods, using conventional met-
rics. Subsequently, the random errors in individual SM products are es-
timated and compared using the lagged-variable (LV) instrumental
variable analysis of Su et al. (2014a).

The paper is organized as follows. Section 2 describes the satellite
and model SM datasets used in this work, as well as their pre-process-
ing. The temporal sampling of satellite data for comparisons across the
four climatic zones of Australia are presented in Section 3.1. Section
3.2 reviews the LV error estimationmethod. Section 4 details the results
of our comparative analyses between satellite andmodeled SM, and be-
tween AMSR-E and AMSR2 products. Finally, Section 5 offers our con-
cluding remarks.

2. Data and pre-processing

2.1. AMSR2 and AMSR-E soil moisture

The AMSR2 is the follow-on instrument to AMSR-E (Imaoka et al.,
2010). Themain improvements of AMSR2 over AMSR-E are: a larger an-
tenna, 2.0 m diameter compared to 1.6 m for AMSR-E; an additional
channel in the C-band (7.3 GHz) to mitigate RFI; an improved calibra-
tion system; and additional momentum wheel (Okuyama and Imaoka,
2015). As a part of the Afternoon-train (A-train) constellation of satel-
lites, AMSR2 has provided daily scans at approximately 1:30 a.m./p.m.
(descending/ascending) local time at 1–2 days revisit time from May
2012 to the present day. There are two prominent AMSR2 SM products,
namely the JAXA (Japan Aerospace Exploration Agency) (Koike, 2013)
and NASA-VUA (VU University Amsterdam) LPRM products (Owe et
al., 2008). Their X-band, Level 3 gridded products have been previously
evaluated by Kim et al. (2015) against in situ measurements and it was
found that the performances of both products decrease in usefulness
under low mean temperature, dense vegetation, highly wetted condi-
tions. The JAXAproduct shows better performance under dry conditions
in terms of root-mean-square errors (RMSE) and biases, but the LPRM
product has lower overall RMSE and biases (Kim et al., 2015). As our
focus lies in distinguishing the influence of instrumental differences be-
tween AMSR-E and AMSR2 on SM retrievals, the LPRM products are
used in this study. The LPRM algorithm uses the instrument's dual-po-
larization observations at individual (C or X) bands to simultaneously
estimate the optical thickness of vegetation and the soil dielectric con-
stant via the inversion of the microwave radiative transfer model.
Also, the Ka-band (36.5 GHz) observations are used to estimate soil
temperature. The LPRM then uses the dielectric mixing model of
Wang and Schmugge (1980) to relate soil dielectric constant to volu-
metric SM in units ofm3m−3. Controlled by the observingwavelengths,
the characteristic soil layer depths vary from b5mm for the X-band and
1–2 cm for the C-bands. The LPRMuses a simplified land surface param-
eterization by assuming constant vegetation scattering albedo, surface
roughness, and polarization mixing.

The AMSR2 LPRM, half-daily, Level 3 gridded, C1-(6.9 GHz), C2-
(7.3GHz), andX-(10.7 GHz) band SMdatasets are provided on a regular
1/4° × 1/4° (latitude × longitude) spatial grid. We used themost recent
LPRMAMSR2 SMdata set provided directly by Dr. Parinussa, whichwas
generated from the re-calibrated brightness temperature data from
JAXA. This product differs from the LPRM V001 product currently avail-
able from NASA GES DISC (Goddard Earth Sciences Data and Informa-
tion Services Center), where its C1- and C2-band retrieved product
show unusual temporal dynamics and significant positive bias, there
are distinctive from AMSR-E, AMSR2 X-band and MERRA-L (Appendix
B). In this study, AMSR2 was spatially upscaled to a 1/2° × 1/2° grid,
by taking equal-weighted averages of their intra-grid values. The de-
scending (1:30 a.m.) SMdata is focus of our analyses as the LPRM is suit-
ed for the descending retrievals (Lei et al., 2015). For completeness, the



Fig. 1. Aggregated Koppen-Geiger climate map of Australia.
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results for the ascending retrievals are presented in Appendix C (Figs. C1
and C2). In order to conduct paired comparisons between AMSR-E and
AMSR2 SM, was mainly focused on the 6.9 GHz (C1-band, hereafter re-
ferred to as AMSR2 C-band) and 10.7 (X-band) products, such that the
AMSR2 7.3 GHz (C2-band) product is excluded from our discussions
in Sections 4.1 and 4.2, with the exception for Fig. 2.

The AMSR-E sensor on the Aqua satellite was similarly placed in the
A-train constellation, providing observations at 1:30 a.m./p.m. (de-
scending/ascending) local time from June 2002 to October 2011. Here
we use the NASA GES DISC Level 3 gridded, half-daily product V002
for AMSR-E-C and AMSR-E-X SM, expressed on the same regular 1/
4° × 1/4° spatial grid as the AMSR2 products. The data is therefore sim-
ilarly upscaled to the same 1/2° × 1/2° working grid.

2.2. MERRA-L soil moisture

The MERRA is a re-analysis that combines in situ and remotely
sensed observations of atmospheric conditions, radiance data from
sounders, and wind retrievals from scatterometers (Rienecker et al.,
2011). The MERRA-L, motivated by limitations in MERRA land surface
hydrological fields, is a land-only analysis with meteorological forcing
from MERRA model and more realistic precipitation forcing (Reichle et
al., 2011). The surface SM estimates from MERRA-L are associated
with the topmost (0–2 cm) soil layer. TheMERRA-L SMare independent
from those of AMSR-E and AMSR2 as the analysis does not use their
brightness temperature observations during data assimilation. Accord-
ingly, the MERRA-L SM data are used here for three purposes. First,
they are used to distinguish two time periods from the AMSR-E era
and the operating period of AMSR2, respectively, duringwhichmodeled
SM conditions are statistically equivalent (see Section 3.1). Second,
comparisons between satellite and model SM are made following Al-
Yaari et al. (2014) and Parinussa et al. (2015); hereMERRA-L SM is con-
sidered as reference data that reflect the spatial and temporal character-
istic of SM. The MERRA-L SM is also known to correspond favorably to
in-situ measurements across the world, including Australia (Albergel
et al., 2013b). Finally, MERRA-L data serves as the instrument variable
for estimating random errors in the AMSR-E and AMSR2 products in
the LV analysis. MERRA-L has been used in a similar way in triple collo-
cation analysis carried out by Draper et al. (2013) and Su et al. (2014a,
2014b).

3. Study area and methodology

3.1. Temporal sampling for four climate zones in Australia

The unavailability of common periods of data between AMSR-E and
AMSR2 prevents a direct comparison of their error characteristics. To
overcome this, one-year analysis timewindows (January 1 to December
31) showing similar MERRA-L SM characteristics were selected for
AMSR-E and AMSR2, respectively. First, the entire study region was di-
vided into four climatic zones based on an aggregation of the Köppen-
Geiger climate classification (Fig. 1) from Peel et al. (2007). Secondly,
annual cumulative distribution functions (CDFs) of the daily MERRA-L
time series of spatially averaged SM were used to represent each year's
zonal SM characteristics. For each zone, we compared the CDFs from all
of the possible pairs of yearly time windows (9 unimpaired years from
2003 to 2011 for AMSR-E × 2 unimpaired years from 2013 to 2014 for
AMSR2 = 18 pairs), assessing their statistical similarity based on their
root-mean-square difference (RMSD) and the Kolmogorov-Smirnov
(K-S) test (Appendix A). The RMSD values were calculated as the differ-
ence between two CDFs, which were binned by percentiles increasing
with 2% intervals (0–100%). In addition, the Kolmogorov-Smirnov (K-
S) statistic was considered to quantify the similarity between two
CDFs. These statistics identify our sampling periods for AMSR-E and
AMSR2 between which fair comparisons are somewhat possible at the
zonal level. The criteria for selection are that: i) the RMSD threshold is
determined up to 0.01, and ii) the K-S test does not reject the null hy-
pothesis (H0) that the two samples come from a population with the
same distribution at 0.05 confidence level. For each zone, the pair of
time windows with the smallest RMSD scores was chosen for further
error characterization (and since for three of the four climate zones,
and the associated K-S tests do not reject the null hypothesis).

Table 1 shows the RMSDs and K-S values for the 18 cases and the
four climate zones. Three of the climate regions (Te-D, Ard, and Trp)
have a case that meets the aforementioned criteria. For the Te-D region,
model SM data during 2003 and 2014 (case 10) show statistical similar-
ity,while for theArd and Trp regions, the similarity exists between 2004
and 2014 model SM data (case 11). For the Te-ND region, case 5 (2007
c.f. 2013) was chosen based on the smallest RMSD value (0.009), even
though the K-S test rejects the null hypothesis.

3.2. Lagged variable (LV) error estimator and comparison metrics

Two approaches were adopted to evaluate the satellite SM products.
First, we quantify the differences between satellite and reference
MERRA-L data using the Pearson's linear correlation coefficient R, and
the unbiased root mean square difference (ubRMSD) where additive
bias has been removed:

R ¼ cov S;Mð Þ
std Sð Þstd Mð Þ ð1Þ

ubRMSD ¼¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E S−E Sð Þð Þ− M−E Mð Þð Þ½ �2
n or

ð2Þ

where S refers to one of the satellite SM anomalies, andM represents the
MERRA-L SM anomalies as the reference data. E(•) computes the expec-
tation value, and cov(•) and std(•) yield covariance and standard devia-
tion statistics. ubRMSD has been used in previous studies of satellite SM
(Albergel et al., 2013a; Dorigo et al., 2015; Kim et al., 2015). The corre-
lation and ubRMSD can be degraded as a result of random errors in
themodeled data, and ubRMSD can be also increased due tomultiplica-
tive bias between satellite andmodeled SM (Su et al., 2015). Thus, these
metrics are unable to characterize the intrinsic errors in the satellite
products.

Accordingly, the second approach was undertaken to estimate their
noise-to-signal ratio (NSR) of the satellite data using LV. The LV analysis



Table 1
Statistics of RMSD and K-S test between two CDFs of MERRA-L surface SM according to 4 climate zones (Bold: RMSD values below 0.01).

Case Two MERRA's CDFs Temperate
(dry summers)

Arid Tropical Temperate
(non-dry summers)

RMSD K-S test P-value RMSD K-S test P-value RMSD K-S test P-value RMSD K-S test P-value

1 2003 vs 2013 0.007 reject 0.02 0.006 reject 0.00 0.025 reject 0.00 0.011 reject 0.00
2 2004 vs 2013 0.015 reject 0.00 0.009 reject 0.00 0.021 reject 0.00 0.020 reject 0.00
3 2005 vs 2013 0.011 reject 0.00 0.012 reject 0.00 0.019 reject 0.00 0.016 reject 0.00
4 2006 vs 2013 0.027 reject 0.00 0.015 reject 0.00 0.029 reject 0.00 0.031 reject 0.00
5 2007 vs 2013 0.016 reject 0.00 0.011 reject 0.00 0.023 reject 0.00 0.009 reject 0.00
6 2008 vs 2013 0.014 reject 0.00 0.007 reject 0.00 0.028 reject 0.00 0.012 reject 0.00
7 2009 vs 2013 0.011 reject 0.00 0.007 reject 0.00 0.027 reject 0.00 0.012 reject 0.00
8 2010 vs 2013 0.013 reject 0.00 0.042 reject 0.00 0.044 reject 0.00 0.031 reject 0.00
9 2011 vs 2013 0.031 reject 0.00 0.052 reject 0.00 0.043 reject 0.00 0.031 reject 0.00
10 2003 vs 2014 0.005 no reject 0.44 0.012 reject 0.00 0.019 reject 0.00 0.010 reject 0.00
11 2004 vs 2014 0.013 reject 0.00 0.002 no reject 0.56 0.007 no reject 0.17 0.018 reject 0.00
12 2005 vs 2014 0.010 reject 0.00 0.020 reject 0.00 0.019 reject 0.00 0.012 reject 0.00
13 2006 vs 2014 0.023 reject 0.00 0.009 reject 0.00 0.027 reject 0.00 0.026 reject 0.00
14 2007 vs 2014 0.010 reject 0.00 0.005 reject 0.00 0.021 reject 0.00 0.013 reject 0.00
15 2008 vs 2014 0.010 reject 0.00 0.008 reject 0.00 0.019 reject 0.00 0.017 reject 0.00
16 2009 vs 2014 0.008 reject 0.00 0.005 reject 0.00 0.013 reject 0.00 0.012 reject 0.00
17 2010 vs 2014 0.010 reject 0.00 0.035 reject 0.00 0.048 reject 0.00 0.040 reject 0.00
18 2011 vs 2014 0.026 reject 0.00 0.042 reject 0.00 0.038 reject 0.00 0.040 reject 0.00

no reject (H = 0). Do not reject the null hypothesis at significance level (0.05).
reject (H = 1). Reject the null hypothesis at significance level (0.05).
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is based on strong autocorrelation characteristics of the geophysical var-
iable of interest (SM). In particular, the standard deviation (std) of ran-
domerror (εS) existing in the individual satellite SMproduct (S), std(εS),
is estimated, usingMERRA-L SMas the lagged instrument. TheMERRA-L
as the lagged instrument takes advantage of its high temporal resolution
and the availability of the model data, allowing error estimation over
short time window (one year in this case). The errors in nighttime SM
data were estimated, using variable lagsm of MERRA-L:

std2 εSð Þ ¼ var Sð Þ− cov St ;Mtð Þcov St ;Mtþmð Þ
cov Mt ;Mtþmð Þ ð3Þ

where the subscripts t and t + m are used to distinguish lag covari-
ance and m = 1 indicates one-day lag, following Su et al. (2014a). The
random error std metric does not necessarily represent the best mea-
sure of merits because it is influenced by the arbitrary scaling of S. The
noise-to-signal ratio (NSR) thus serves as an alternative error metric:

NSRS ¼ std εSð Þ
std Sð Þ ð4Þ

The SM data can have seasonal variations, so it is generally recom-
mended that LV analysis be applied to SM anomalies (Miralles et al.,
2010). In this study, the anomalies were defined as deviations from a
31-day moving average (Albergel et al., 2012; Su et al., 2014a, 2014b).

4. Results and discussion

4.1. Comparisons between AMSR2 and AMSR-E C-/X-band products with
MERRA-L SM products

Fig. 2 shows the time series of AMSR-E-C and -X SM from July 2002
to October 2011 and AMSR2-C1, -C2, and -X SM from July 2012 to Sep-
tember 2014 with MERRA-L surface SM. The time series for each prod-
uct represent zonal daily average values for each climate zone (Te-D,
Ard, Trp, and Te-ND). All AMSR2 SM products exhibit similar temporal
patterns to those of AMSR-E SM for each climate zone. Both AMSR-E-X
andAMSR2-X SMshow lower biases relative toMERRA-L SM, compared
to AMSR-E/2-C SM, especially in the Trp and Te-ND climate zones. Figs.
3–6 evaluate inter-comparisons between AMSR-E and AMSR2 data
against MERRA-L. It should be emphasized that pixel-to-pixel spatial
comparisons between AMSR-E and AMSR2 in Figs. 3–5 must be
interpreted with caution, because SM dynamics and land-surface char-
acteristics between the two selected years can differ at the pixel level.
Generally speaking, the zonal time series of AMSR-E SM and AMSR2
SM (C- and X-bands) show similar temporal variations to the MERRA-
L SM data during their respective periods, although visible biases are
present almost evenly among AMSR-E and AMSR2 in the Trp and Te-
ND regions (Fig. 2). These analyses also show that the C-band SM prod-
ucts have slightly higher biases than the X-band SM. Figs. 3 and 4 show
spatial comparisons of ubRMSD and the correlation between AMSR-E/2
C- and X-band SM andMERRA-L SM anomalies over Australia. The pairs
of AMSR-E and AMSR2 maps show very similar spatial patterns, which
is confirmed by the boxplots of metrics (see also Fig. 6) with higher
ubRMSD over the eastern seaboards (Fig. 3) and higher R observed
over the temperate (Te-D and Te-ND) and semi-arid regions (Fig. 4).
The notable difference between AMSR-E and AMSR2 is that AMSR2-X
shows lower ubRMSD in temperate (Te-ND) southeastern regions, and
AMSR-E C- and X-bands have notably lower ubRMSD in parts of the
arid zone.

The comparisons of other configurations are summarized in Fig. 5.
This figure compares the metrics, ubRMSD and R, at the pixel level for
the C- and X-band SM products across the four climate zones. Despite
SM variability at the pixel level between the sampled years, there is
agreement between two satellite-based ubRMSD metrics, especially
for the Ard and Trp zones. Partitioning the number of pixels with a 1:1
line, we found that the ubRMSD of AMSR2-C was higher than that of
AMSR-E-C for all climate zones, with pixel percentages being 78.0,
73.4, 71.0, and 80.1% for Te-D, Ard, Trp, and, Te-ND, respectively (Fig.
5a). The percentages of pixels where AMSR2-X are higher than those
of AMSR-E-X are 66.6, 71.7, and 52.0% for Te-D, Ard, and Trp, excluding
the opposing case of Te-NDwith 39.2% (Fig. 5b). Fig. 5c and d show that,
for R-values, AMSR-E-C and -X are slightly superior to AMSR2, with the
exception of the Trp zone; the C-band yields relative percentages of
55.0, 52.1, and 61.5%, and the X-band percentages of 55.1, 50.9, and
54.0% for Te-D, Ard, and Te-ND, respectively.

Fig. 6 shows the zonal statistics of the metrics, which are arguably
more representative of the relative merits of the satellite SM products,
based on our chosen zonal sampling strategy. The statistics of ubRMSD
and R, namely their first quartile, median and third quartile, are summa-
rized with boxplots. A comparison between AMSR-E-C and X products
reveals that the X-band has a slightly higher ubRMSD in the Trp and
Te-ND zones, with median statistics of 0.042 and 0.050 m3 m−3 and
0.039 and 0.046m3 m−3 due to multiplicative bias. This could be partly



Fig. 2. Time series of AMSR-E (C-/X-band) soilmoisture from July 2002 to October 2011 andAMSR2 (C1/C2/X-band) soilmoisture from July 2012 to September 2014 andMERRA-L surface
soil moisture for the whole period.

Fig. 3. Spatial maps of unbiased RMSD of AMSR-E/2 C-band (6.9 GHz) and X-band (10.7 GHz) SM anomalies compared to MERRA-L SM anomaly over Australia.
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Fig. 4. Spatial maps of R-value between AMSR-E/2 C-band (6.9 GHz) and X-band (10.7 GHz) SM anomalies and MERRA-L SM anomaly over Australia.

100 E. Cho et al. / Remote Sensing of Environment 188 (2017) 95–105
attributed to differences in representative depths between the model
and satellite SM. Additionally, R of X-band is marginally lower than C-
band in the Trp zone (0.27 c.f. 0.32) as a result of larger random errors.
C-band has a longer sensing depth and thus is expected to be less sus-
ceptible to vegetation masking compared to X-band (Cho et al.,
2015b; Draper et al., 2009). However, this contrasts between C- and
X-band data is not consistent with AMSR2. Moreover, AMSR2 C-band
shows higher ubRMSD than AMSR-E C-band, especially in the Trp and
Te-ND zones. One possible reason is the difficulty to conduct intercali-
bration procedure for the AMSR2's C-band observations. Currently, the
intercalibration between X-band observations from AMSR-E and
AMSR2 can rely on overlapping X-band observations from the TRMM
satellite (Parinussa et al., 2015), but this approach is not immediately
applicable to the C-band. Consequently, the differences in ubRMSD be-
tween AMSR2 and AMSR-E C-bands are relatively large, with a maxi-
mum of 0.09 m3 m−3, and differences in R of up to 0.07, compared to
the X-bands.

As a whole, the zonal dependency of ubRMSD and R values are sim-
ilar between the AMSR2 and AMSR-E products. In particular, their
ubRMSD values are generally lower in Te-D and Ard zones, while R
values are also highest in the Te-D and Ard zones. Further, in a compar-
ison with MERRA-L data, AMSR-E and AMSR2-X are generally very sim-
ilar. The correlation-based accuracy of ascending SM retrievals is
presented in Appendix C.

4.2. Comparisons of AMSR2 and AMSR-E error estimates

Figs. 7–8 depict the spatialmaps of randomerror std for AMSR-E and
AMSR2, and Fig. 9 provides their zonal statistics. Comparing the C- and
X-bands, the error std estimates are generally similar across the
continent for both AMSR-E and AMSR2. Exceptions can be seen in
parts of eastern seaboard in Te-ND for AMSR2, which is confirmed by
the boxplots (Fig. 9b and d). Additionally, between AMSR-E-C and
AMSR2-C, the latter shows higher error std for all zones, with the
zonal median error std being slightly higher by 0.01 m3 m−3 at most,
whereas in the X-band, the latter shows lower error std for Trp and
Te-ND zones. In fact, the error stdmaps display general correspondence
with the climate characteristics (Fig. 1), and there are spatial similarities
among the products. The zonal differences of error std support the ex-
pectation that the spatial variability of error std mirrors the overall
soil wetness conditions because retrieval SM and retrieval error is joint-
ly scaled be the field capacity of soil. The Te-ND zone is associated with
higher error std across all the products, with the lowest error in the Ard
zone.

Furthermore, there is also a visible association of error std with land
surface characteristics. Eastern and southwestern regions are dominat-
ed by higher tree cover and urban land uses, compared to the arid and
semi-arid central region that makes up 70% of Australia, which is dom-
inated by deserts, shrubs, and grasses. The corresponding spatial pat-
terns of error std are expected, since that the quality of passive SM
retrievals at a coarse scale diminishes with vegetation density and spa-
tial heterogeneity (Loew, 2008; Brocca et al., 2011). For these regions, it
appears to be consistent with the previous error evaluation carried out
by Su et al. (2014b), although they analyzed the errors in descending
and ascending SM retrievals jointly.

Fig. 8 and Fig. 9e–h show complementary results based on NSR as a
scaling-independentmetric. The NSRmetric partially mirrors the corre-
lation results in Fig. 4(d–f), as a higher NSR in the satellite data leads to
diminished correlation with the MERRA-L data. However, larger error
std does not necessarily lead to higher NSR. For instance, the Te-ND



Fig. 5. Comparisons of unbiased RMSD (a, b) and R-value (c, d) between AMSR-E and AMSR2 C- and X-band SM anomalies from calculating with MERRA-L SM anomaly for four climate
zones.
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zone has the second highest median NSR (0.72–0.78), but has the
highest median error std (Fig. 9). The low zonal median error std in
Ard is associated with the lowest median NSR (0.65–0.70) and a rela-
tively higher median R (0.64–0.65) due to low SM variability at low
moisture levels in this region. In the Trp region, the high median NSR
(0.90–0.92) and lower median R (0.27–0.33) may be related to the
low quality of microwave signals as well as the high SM variability
over the dense vegetation cover (Al-Yaari et al., 2014; Chakravorty et
al., 2016). It also could be due to relatively low quality of MERRA-L SM
over forested areas, compared to non-forested areas (Yi et al., 2011).
SM retrievals over Te-D andTe-ND regions show relatively highermedi-
an NSR, ranging from 0.72 to 0.75 and 0.72 to 0.78, respectively. There
are notable spatial similarities in NSR across the satellite products.
Given the spatiotemporal coincidence of the data and analysis period,



Fig. 6. Four climate zonal statistics of the unbiased RMSD and R-value for (a, e) AMSR-E C-band, (c, g) AMSR-E X-band, (b, f) AMSR2 C-band, and (d, h) AMSR2 X-band SM anomalies.
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the NSRmaps of AMSR-E/2 C and X-band SM are similar across the conti-
nent. However, the NSR maps of AMSR2-X are visibly different from
AMSR-E in parts of the Ard andTrp zones in Fig. 8. This could be attributed
to differences in the meteorological and land surface characteristics be-
tween the two analysis periods for AMSR2 and AMSR-E, even though
the modeled SM conditions, which may be erroneous, are similar on the
Fig. 7. Spatial maps of error standard deviation of AMSR-E/2 C-band (6.9 GHz) and X-b
basis of our tests. Our results therefore suggest that this may lead to spa-
tial differences in random errors. Furthermore, pixel-level statistics may
not accurately map monotonically to zonal summary statistics. Future
work should consider data sampling strategies implemented at the pixel
level and the use of other ancillary data on, for example, vegetation, rain-
fall, and land surface temperature, to enhance diagnosis.
and (10.7 GHz) SM anomalies over Australia, estimated using LV error estimator.



Fig. 8. Same as Fig. 7, but NSR estimates are plotted and compared.
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Based on the bulk statistics, and with minimal RFI in the regions, the
results show no superiority of AMSR2 LPRM C- and X-bands retrievals
over AMSR-E in terms of error std andNSR. Thismay be related to the cal-
ibration difference between AMSR2 and AMSR-E (Okuyama and Imaoka,
Fig. 9. Four climate zonal statistics of error standard deviations and NSR for (a, d) AMSR-E C-ba
anomalies.
2015). The calibration process can lead to changes of scaling of the SM
data (De Lannoy et al., 2013), which can influence the multiplicative
bias. The lack of additional calibration processes for AMSR2data could off-
set the effect of instrumental improvements in AMSR2 on SM retrievals.
nd (6.9 GHz), (b, e) AMSR-E X-band (10.7 GHz), and (c, f) AMSR2 X-band (10.7 GHz) SM
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5. Conclusions

This work presents an inter-comparison of AMSR2 and AMSR-E SM
(C- andX-band) retrievals over Australia.We ensured retrieval algorith-
mic consistency between two sensors by using the LPRM products and
minimal intra-annual differences in SM conditions between analysis pe-
riods for the two sensors. The latter was achieved through the use of
CDFs of the MERRA-L SM time series to select comparable one-year
time periods in which SM conditions are statistically equivalent on a
zonal scale. It was found that AMSR-E and AMSR2 C- and X-band prod-
ucts showed comparable agreement with MERRA-L SM. For the
ubRMSD values, AMSR-E C-band SM had better agreements than
AMSR2 C-band with median ubRMSD (AMSR-E: 0.029 to
0.046 m3 m−3, AMSR2: 0.032 to 0.055 m3 m−3). Also, AMSR-E X-band
showed slightly better agreements compared to AMSR2 across three cli-
mate zones (AMSR-E: 0.027 to 0.042 m3 m−3, AMSR2: 0.030 to
0.041 m3 m−3), with the exception of relatively high ubRMSD of
0.050m3m−3 (AMSR2: 0.044m3m−3) in the Te-ND zone. The correla-
tion (R-value) of AMSR2 C- & X-band SM was generally similar with
those of AMSR-E, with a maximum difference in R of 0.07 in the Te-
ND zone.When the samemetrics were used to compare X-band against
C-band, AMSR-E and AMSR2 X-band SM showed similar zonal distribu-
tions to the C-band SM, but differences were perceptible in the Ard
zones (AMSR-E/2 C-band: 0.32/0.33, AMSR-E/2 X-band: 0.27/0.29).
With the additional metrics, error std, and NSR being used, the results
revealed that the error maps of AMSR2 & AMSR-E C and X-band were
zonally similar over the four Australian regions. However, the notice-
able differences in error std and NSR between AMSR-E and AMSR2
were confirmed when their boxplots were used. For both frequencies,
the error of AMSR2 were higher than AMSR-E in the two drier zones
(Te-D and Arid) and there was no clear superiority of AMSR2 in the
two wetter zones (Te-ND and Trp).

This study concludes that there is little evidence to support the ben-
efits of the improved instrumental design of AMSR2 in improving SM
retrievals, compared to AMSR-E. There could be several possible rea-
sons. First, the differences may be too small to be recognized at a
coarse-scale (50 km) resolution and in zonal statistics. Second, when
MERRA-L is used as reference, the model error could be larger than
the differences in accuracy, such that the latter cannot be resolved. Last-
ly, the LPRM algorithm, which essentially relates calibrated brightness
temperature data to soil moisture values, may not be able to propagate
the influence of instrumental improvements in order to achieve en-
hanced retrievals. The differences between NASA's LPRM AMSR2 C-
band products and the X-band product, and those between the two ver-
sions of AMSR2 C-band products reflect the adverse impacts of incorrect
calibration of AMSR2 brightness temperatures on its SM retrievals. They
have shown to lead to significant systematic biases, resulting in changes
to the short time-scale and seasonal dynamics of retrieved SM. These
data illustrate the importance of using properly calibrated brightness
temperature data prior to retrievals. With ongoing efforts to improve
the calibration of AMSR2 data, improvements to retrieved SM can be ex-
pected, yet at this point, the similarities between AMSR-E and AMSR2
SM suggest that AMSR2 & AMSR-E combination provides a valuable
asset for continuous passive microwave SM retrievals. Future work
may consider the use of land surface information to revise the sampling
strategy and to investigate the pixel-level differences between AMSR2
and AMSR-E.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.rse.2016.10.050.
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