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Abstract Human-induced landscape changes affect hydrologic responses (e.g., floods) that can be
detected from a suite of satellite and model data sets. Tapping these vast data sets using machine learning
algorithms can produce critically important and accurate insights. In the Red River of the North Basin in
the United States, agricultural subsurface drainage (SD; so-called tile drainage) systems have greatly
increased since the late 1990s. Over this period, river flow in the Red River has markedly increased and 6
of 13 major floods during the past century have occurred in the past two decades. The impact of SD
systems on river flow is elusive because there are surprisingly few SD records in the United States. In this
study, Random Forest machine learning (RFML) classification method running on Google Earth Engine's
cloud computing platform was able to capture SD within a field (30 m) and its expansion over time for a
large watershed (>100,000 km?). The resulting REML classifier drew from operational multiple satellites and
model data sets (total 14 variables with 36 layers including vegetation, land cover, soil properties, and
climate variables). The classifier identified soil properties and land surface temperature to be the strongest
predictors of SD. The maps agreed well with SD permit records (overall accuracies of 76.9-87.0%) and
corresponded with subwatershed-level statistics (r = 0.77-0.96). It is expected that the maps

produced with this data-intensive machine learning approach will help water resource managers to assess
the hydrological impact from SD expansion and improve flood predictions in SD-dominated regions.

Plain Language Summary Farmers install subsurface drainage pipes (so-called tile drainage) to
improve crop yields on poorly drained soils, which impacts hydrological response (e.g., floods). Consistent
records of subsurface drainage expansion are needed to understand its impacts on water resources. In the
Red River of the North Basin in the United States, subsurface drainage systems have increased since the
late 1990s. Over this period, river flow in the Red River has markedly increased and 6 of 13 major floods
during the past century have occurred in the past two decades. Because the current National Oceanic and
Atmospheric Administration's National Weather Service flood forecasting model does not include
subsurface drainage information, they sometimes overpredict or underpredict flood flows. We developed
high-resolution (30 m) subsurface drainage maps by combining multiple satellite “big” data and model
products using a Random Forest machine learning classification via Google Earth Engine's cloud computing
platform. The maps showed good agreement with available subsurface permit records. It is expected that
the machine learning-based subsurface drainage maps will help water resource managers and flood
forecasters to improve flood prediction in agricultural dominated regions.

1. Introduction

In the northcentral United States, the amount of streamflow has greatly increased and floods have occurred
more frequently during the last 20 years. In the Red River of the North Basin (RRB), 6 of the 13 major
floods over the past 100 years have occurred since the late 1990s (Rannie, 2015; Todhunter, 2001;
Tuttle et al., 2017). Numerous studies have been conducted to determine the major causes for the hydrologic
changes in the northcentral United States (Foufoula-Georgiou et al., 2015; Frans et al., 2013; Raymond et al.,
2008; Schilling et al., 2010). Potential factors include changes in climate, land use and land cover, including
agricultural subsurface drainage installation. Subsurface drainage (SD) expansion in agricultural landscapes
resulting in an increase in cultivated areas is a key cause of regional water balance change (Rogger et al.,
2017; Schottler et al., 2014). In the past two decades, SD systems have exponentially expanded over the
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agricultural areas in the northcentral United States. In the RRB, SD areas have dramatically increased from
2000 to the present (e.g., in North Dakota, 1.26, 114, and 892 km? for 2002, 2008, and 2016, respectively;
Finocchiaro, 2014, 2016; Dollinger et al., 2013).

SD systems are used to remove excess surface water and to lower water tables through subsurface pipe net-
works installed below the ground surface. When the drainage pipes are installed at a certain depth and spa-
cing, the pressure head at the pipes is approximately the atmospheric pressure and the pressure distributions
in soil profile horizons change to an equilibrium profile. Thus, the original water tables in the undrained con-
dition are lowered to the equivalent depth of the drainage systems, especially during spring and fall. The effec-
tive infiltration rates would be changed by drainage installations due to the altered hydraulic gradient of the
upper soil layer above drained pipes (Rodgers et al., 2003; Shokri & Bardsley, 2015; Youngs, 1975).

SD impacts on runoff, soil moisture dynamics, and evapotranspiration have been studied at a range of
spatiotemporal scales (Eastman et al., 2010; Frans et al., 2013; Kelly et al., 2017; King et al., 2014;
Kladivko et al., 2004; Lenhart et al., 2011; Rahman et al., 2014; Randall et al., 2003; Schottler et al., 2014;
Williams et al., 2015). At a field scale, Kladivko et al. (2004) showed that SD-induced water yields were 8%
to 26% of annual rainfall in southeastern Indiana, depending on the year and the drain spacing. Eastman
et al. (2010) found that the subsurface-drained field discharged four times more water than the naturally
drained field for their clay loam sites. At a watershed scale, King et al. (2014) reported that about 21% of
annual precipitation and 47% of total watershed discharge was generated from SD in central Ohio.
Williams et al. (2015) concluded that SD discharge contributed 56% of the annual watershed discharge in
the same Ohio watershed. At a larger scale, Frans et al. (2013) showed that SD increased annual streamflow
up to 40% locally in the Upper Mississippi River basin. Schottler et al. (2014) compared a change in water
yield between two historical periods (1940-1974 and 1975-2009) in watershed scale. They found that SD
expansion is likely the major driver of increased streamflow in 21 Minnesota agricultural watersheds.
Kelly et al. (2017) also concluded that the extensive SD systems in agricultural basins have contributed to
the increase in river flow at the large basin scale.

Despite the increased water yield, it is possible that SD could mitigate downstream flooding by allowing
surface runoff to infiltrate and be released at a slower rate. As recently as 2013, the National Oceanic and
Atmospheric Administration's (NOAA) National Weather Service North Central River Forecast Center
(NCRFC) predicted a peak flow that exceeded the observed by 70% in the RRB (Tuttle et al., 2017).
Because the current flood forecasting system does not consider SD information, it is still an open question
as to the dominant processes that are affected by SD in the region. However, it has been observed that
as SD systems have expanded, operational flood forecasting has become more difficult due to limited
information about spatial and temporal SD expansion (personal communications with Mike DeWeese and
Pedro Restrepo, NOAA NCRFC).

Due to the paucity of SD data, the results of the previous studies also had considerable uncertainties.
Schottler et al. (2014) indicated that the unexplained portion of evapotranspiration change in the long-term
water balance approach is due to SD change but did not have the supporting SD data. While Kelly et al.
(2017) had county-level drainage data for five census years to assess SD impact on runoff patterns, they noted
inconsistencies and errors of the census data with concerns about limited SD records in the United States.

Most previous studies that have attempted to map SD systems focused on delineating subsurface drained
lines (or areas) at a field or catchment scales and used Geographical Information System (GIS)-based ana-
lyses and/or aerial image processing techniques (Naz et al., 2009; Naz & Bowling, 2008; Sugg, 2007;
Tetzlaff et al., 2009; Tetzlaff et al., 2009; Zhang et al., 2014). The 1992 National Resource Inventory (NRI) data
set provided potential extents of subsurface drains in continental United States (Wieczorek, 2004). The NRI
data set was created with GIS and database management tools using collections at more than 800,000 sample
sites over the United States. Sugg (2007) estimated SD percentage for each county based on the GIS-based soil
drainage class. They compared their results with the NRI drainage map and developed a SD map at the
county scale. Sui (2007) also used a GIS-based analysis of land cover, soil, and slope data sets to classify
the SD areas for cropland in Indiana where the soils are poorly drained, and the slope is less than 2%.
However, the SD mapping studies could not validate their results due to the lack of SD data (Naz et al.,
2009; Sugg, 2007). Infrared aerial photographs have been used to map subsurface drain lines and to delineate
wet and drained areas in a field (Verma et al., 1996). Soils over subsurface drained areas have higher
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reflectance in the infrared spectrum because these areas tend to dry faster than the soil at other regions.
Previous studies found that the best time to take imagery to be used for SD delineation is within 3 days after
a 25 mm or greater rainfall event (Northcott et al., 2000; Varner et al., 2002). A combination of high resolu-
tion (1-m) color (or black and white) infrared aerial images with land cover, soil, and topography data pro-
vided a map of individual drainage lines in westcentral Indiana (Naz et al., 2009). Tlapakova et al. (2015)
provided an example of manifestations of SD systems in color aerial images and suggested best land
conditions for the optimal SD identification. Using an optical camera and unmanned aerial vehicle system,
Zhang et al. (2014) developed a mosaiced SD map from infrared color composite imagery. While the aerial
imagery approaches allow targeted study of watersheds, they are expensive and may be limited by weather
and the availability of resources.

Satellite remote sensing data offers the ability to observe temporal changes in surface conditions due to SD
at large spatial extents. Gokkaya et al. (2017) and Moller et al. (2018) provide evidence of SD induced
surface changes using Landsat satellite images. However, they had few satellite observations due to limited
cloud-free images and data processing requirements. Jacobs et al. (2017) showed that Moderate Resolution
Image Spectroradiometer (MODIS) land surface temperature and Advanced Microwave Scanning
Radiometer for Earth Observing System soil moisture products could detect physical effects of SD systems
on soil thermal-moisture dynamics. In addition to these products, there are many other satellite products that
might show the SD signature. However, traditional analysis techniques, such as image processing techniques
and the GIS-based decision tree classification commonly used in previous studies (Gokkaya et al., 2017; Naz &
Bowling, 2008; Sugg, 2007), are not well suited to manage and analyze terabyte-size satellite remote sensing
data sets for SD detection. In these cases, machine learning (ML) techniques have demonstrated value
(Belgiu & Dragut, 2016; McCabe et al., 2017; Moller et al., 2018; Shen, 2018; Tao et al., 2016).

Random forest machine learning (RFML) is a supervised classification algorithm that constructs a multitude
of decision trees and predicts class labels, using a random subset of training samples and variables (Breiman,
2001). The RFML has become popular within the remote sensing and hydrology communities due to its accu-
racy (Belgiu & Dragut, 2016; Gomez et al., 2016; Petty & Dhingra, 2018). For land surface and crop type mon-
itoring, the RFML has been shown to produce higher accuracies than other ML techniques such as
Maximum Likelihood Classifier, Neural Network, and Support Vector Machine (Gémez et al., 2016; Ma
et al., 2017; Ok et al., 2012). Also, it has been widely used in the field of hydrological predictions due to its
capacity to determine variable importance, its robustness to data reduction, and that does not overfit
(Petty & Dhingra, 2018; Shortridge et al., 2016; Wang et al., 2015). Compared to other techniques, however,
the RFML method has inherent limitations including (1) complexity which makes less straightforward to
understand the relationship in the input data and (2) significant and timing-consuming of computational
requirements to construct the algorithm.

The Google Earth Engine's (GEE) cloud computing platform (Gorelick et al., 2017) provides the ability to
manage very large satellite and model data sets to analyze them using ML techniques. The GEE is designed
to provide access to high-performance computing resources for processing massive geospatial data sets,
without technical hurdles (e.g., data download and storage, handling obscure file formats, and managing
databases). Because a variety of geospatial data sets including historical and current satellite and aerial
imaging systems can be freely accessed and analyzed, the GEE has been widely used in computationally
expensive hydrological, agricultural and socio-economic studies (Deines et al., 2017; Ge et al., 2019;
Jin et al., 2019; Xie et al., 2019).

Here, we focus on developing SD maps to improve the capability of flood forecasting in agricultural
landscapes across the RRB. The RFML algorithm is used to develop annual SD maps in the GEE computing
platform. We also seek to understand which of the related, globally available vegetation, thermal, moisture,
and climate data sets from multiscale satellites and models can be used to identify SD areas and with what
accuracy. The accuracy of these maps is assessed using SD permit records in the Bois de Sioux Watershed
(BASW) in Minnesota and the North Dakota portion of the RRB region (ND-RRB).

2. Study Area

The Red River of the North Basin overlies portions of North Dakota, South Dakota, and Minnesota
(Figure 1). Its main stem marks the border between North Dakota and Minnesota. The river flows north
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Figure 1. Study area location and land cover map. (a) Red River of the North Basin; (b) Land cover classification from U.S. Geological Survey National Land Cover
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Database 2011; and (c) Cropland data layers with subsurface drained area in 2017 noted in Bois de Sioux Watershed.

from Wahpeton, ND, to the U.S.-Canada border, and then through Winnipeg, Manitoba, Canada. The basin
drainage area is about 112,200 km?, with 885-km long from U.S. Geological Survey (USGS) Watershed
Boundary Dataset (HUC04). Along the distance of the main stem, it drops only 72 m, for an average gradient
of 0.08 m/km. In the RRB, agricultural SD systems have increasingly used to drain fields since the late 1990s
due to the region's flat topography and low-permeability soils. The NOAA flood forecasters and water
resource experts in RRB identified the rapid increase in the SD systems as a likely culprit for the changed
river flows and floods because SD alters direct runoff, soil moisture, and evaporation seasonally

(Rijal et al., 2012; Schottler et al., 2014).

3. Method
3.1. Data Sets

Working in the GEE cloud computing platform, the data sets from multisource satellite and model assimila-
tion products were used (total 1.4 terabytes). Table 1 lists the 36 seasonal and annual layers that were gener-
ated including 16 vegetation layers (top 16 lines at the table), 8 soil-climate variable layers (next 8 lines), and
12 thermal-moisture layers (12 lines from the bottom) for 2009, 2011, 2014, and 2017. All 36 input layers were
disaggregated to 30-m pixel resolution. The data sets generally fit into three categories: vegetation, thermal-
moisture, and climate-land variables. The four years were selected based on land surface conditions (dry/
wet) particularly in spring based on spring mean precipitation and soil moisture. Years 2009 and 2011 were
selected because they have experienced spring snowmelt floods over the RRB. Even though years 2014 and
2017 were not as wet as 2009 and 2011, they were included to examine whether the RFML method can cap-
ture continuous SD expansion over the years that have occurred in RRB. The magnitude of year-over-year
hydrologic variability for 2009 through 2017 is shown via a hydrograph at Fargo, North Dakota (USGS:

0505400), which a major streamflow gage in the RRB (Figure S1 in the supporting information).
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Table 1

Summary of Variables Used in RFML Including Time Period, Resolution, and Data Source

Variable (full name) Short name Time period Resolution (mz) Data source
Spring mean EVI EVI_spr_mean 1 May to 30 Jun 30 Landsat
Spring mean GI GI_spr_mean 1 May to 30 Jun 30 Landsat
Spring mean NDVI NDVI_spr_mean 1 May to 30 Jun 30 Landsat
Spring mean NDWI NDWI_spr_mean 1 May to 30 Jun 30 Landsat
Spring range in EVI EVI_spr_range 1 May to 30 Jun 30 Landsat
Spring range in GI GI_spr_range 1 May to 30 Jun 30 Landsat
Spring range in NDVI NDVI_spr_range 1 May to 30 Jun 30 Landsat
Spring range in NDWI NDWI_spr_range 1 May to 30 Jun 30 Landsat
Summer mean EVI EVI_sum_mean 1 Jul to 30 Sep 30 Landsat
Summer mean GI GI_sum_mean 1 Jul to 30 Sep 30 Landsat
Summer mean NDVI NDVI_sum_mean 1 Jul to 30 Sep 30 Landsat
Summer mean NDWI NDWI_sum_mean 1 Jul to 30 Sep 30 Landsat
Summer range in EVI EVI_sum_range 1 Jul to 30 Sep 30 Landsat
Summer range in GI GI_sum_range 1 Jul to 30 Sep 30 Landsat
Summer range in NDVI NDVI_sum_range 1 Jul to 30 Sep 30 Landsat
Summer range in NDWI NDWI_sum_range 1 Jul to 30 Sep 30 Landsat
Spring mean soil moisture SM_spr_mean 1 May to 30 Jun 25,000 SMOS (NASA-USDA)
Spring range soil moisture SM_spr_range 1 May to 30 Jun 25,000 SMOS (NASA-USDA)
Spring mean LST LST_spr_mean 1 May to 30 Jun 1,000 Terra MODIS
Spring range LST LST_spr_range 1 May to 30 Jun 1,000 Terra MODIS
Spring mean STR 1 STR1_spr_mean 1 May to 30 Jun 30 Landsat
Spring mean STR 2 STR2_spr_mean 1 May to 30 Jun 30 Landsat
Spring range STR 1 STR1_spr_range 1 May to 30 Jun 30 Landsat
Spring range STR 2 STR2_spr_range 1 May to 30 Jun 30 Landsat
Summer mean STR 1 STR1_sum_mean 1 Jul to 30 Sep 30 Landsat
Summer mean STR 2 STR2_sum_mean 1 Jul to 30 Sep 30 Landsat
Summer range STR 1 STR1_sum_range 1 Jul to 30 Sep 30 Landsat
Summer range STR 2 STR2_sum_range 1 Jul to 30 Sep 30 Landsat
Growing season precipitation Preci_grow 1 May to 30 Sep 4,000 GRIDMET
Early season precipitation Preci_early 1 Dec to 30 Apr 4,000 GRIDMET
Annual precipitation Preci_ann 1 Dec to 30 Sep 4,000 GRIDMET
Aridity Aridity 1 May to 30 Sep 4,000 GRIDMET
Cropland Data Layers Cropland NA 30 USDA NASS
Clay percentage clay_perc NA 30 POLARIS
Available soil water content awc NA 30 POLARIS
Saturated hydraulic conductivity ksat NA 30 POLARIS

Note. All input variables were accessed through the GEE's data archive, except for the three 30-m soil property data sets from POLARIS (available at www.polaris.
earth; Chaney et al., 2016, 2019), which were manually uploaded to the GEE for RFEML classification. 16 vegetation layers appear in the top 16 rows (EVI, GI,
NDVI, and NDWI), 12 thermal-moisture layers follow the vegetation layers (SM, LST, STR1, and STR2), and 8 soil-climate variable layers are the remaining 8
rows in the table (preci, aridity, cropland, and three soil properties). GEE = Google Earth Engine; RFML = random forest machine learning; EVI = enhanced
vegetation index; GI = greenness index; NDVI = normalized difference vegetation index; NDWI = normalized difference water index.

Seasonal mean and range (maximum-minimum) composites of four vegetation indices were produced using
spectral reflectance products from Landsat 7 Enhanced Thematic Mapper Plus and Landsat 8 Operational
Land Imager and Thermal Infrared Sensor (30-m resolution): (1) the normalized difference vegetation index
(NDVI); (2) the normalized difference water index (NDWTI), which is highly sensitive to vegetation water
content (Jackson, 2004); (3) the enhanced vegetation index (EVI), which is an improved vegetation index
with decoupling of the background signal of canopy (Huete et al., 2002); and (4) the greenness index that
is sensitive to the irrigation signal (Deines et al., 2017). The vegetation indices were divided seasonally for
the spring (April-June) and summer (July—-September) periods to include vegetation growth and their
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seasonal changes into the RFML model. The detailed variable equations are included in the supporting
information (Text S1).

For thermal-moisture variables, two shortwave infrared transformed reflectances (STR) from Landsat 7 and
8 were used, which have a linear relationship with soil moisture content (Sadeghi et al., 2015). Land surface
temperature (LST) from MODIS (1-km resolution) and surface soil moisture from Soil Moisture Ocean
Salinity (SMOS) satellite (25-km resolution) were also used, but the soil moisture data were only available
from 2010 (Kerr et al., 2010).

Climate-land variables can improve classification accuracy by refining wet versus dry year patterns and
including crop type and soil property effects. Total precipitation for the growing (May to October) and
nongrowing (December in the previous year to April) seasons, and aridity (precipitation scaled by reference
evapotranspiration, May to August) were assembled from the University of Idaho Gridded Surface
Meteorological Dataset (4-km resolution; Abatzoglou, 2013). Annual crop types from Cropland Data
Layers were provided by the USDA National Agricultural Statistics Service. Three soil property maps, avail-
able water content, saturated hydraulic conductivity, and clay percent of the soils at 0-5 cm, from PLARIS
database (30-m spatial resolution; Chaney et al., 2016, 2019), were also used in the RFML classification.
Land cover and slope information were used to make the non-SD area (e.g., nonagricultural and high slope
area). We identified low gradient cultivated crop areas (slope <2%) using the USGS National Land Cover
Dataset and the USGS National Elevation Dataset (Naz et al., 2009). The input products with coarse resolu-
tions (e.g., 1-, 4-, or 25-km grid) were disaggregated/resampled to the finer resolution (30-m grid) using a
nearest neighbor resampling by default in the GEE (https://developers.google.com/earth-engine/resample).

3.2. Subsurface Drainage Permit Records for Training and Validation Data

Two separate SD permit records were used to develop training points and to validate the RFML maps, assum-
ing the permit records are ground “truth” SD measurements: (1) a subbasin SD records obtained from the
BdSW district in Minnesota (http://www.bdswd.com) and (2) the USGS records obtained from the
North Dakota State Water Commission (Finocchiaro, 2016). The BASW SD permit records were collected
from 1999 to the present over the BASW region in Minnesota (Figure 1c). The annual SD records contain
locations of subsurface permit lines and the request and approved dates as GIS shape files as well as
engineering design specifications. SD installation is estimated to occur within three months of permit
approval. Because the BASW SD record is a line shape file, the SD lines were buffered to provide an effective
extent. A 30-m buffer (15-m buffer on either side of the line) was used based on typical SD separation and
guidance from the region's agricultural engineers (Naz et al., 2009). The USGS SD records (https://www.
sciencebase.gov) were issued by the ND State Water Commission and collected by the USGS over the
North Dakota from 1993 to 2016 (Finocchiaro, 2016). The USGS SD records provide polygon outlines of
the permit areas and approval dates.

Previous studies used the U. S, Census of Agriculture drainage data (Kelly et al., 2017; Krapu et al., 2018;
USDA National Agricultural Statistics Service, 2014). The Census data are extremely limited because the five
available census years only provide a single SD value for each county and year in several U.S. states, do not
include areas less than 2 km? (Kelly et al., 2017). In contrast to previously used Census SD data, the BASW
and USGS SD permit records provide greatly improved information (e.g., exact SD locations and approval
dates) and are well suited for developing training and validation data.

That said, the BASW and USGS SD records are not perfect. Errors in the records may occur if farmers did not
install the system or if they were installed them later than originally planned. The permit records also depend
on an institution’s policy. The North Dakota SD permit policy was changed in 2011, likely resulting in uncer-
tainties about the SD permit records (North Dakota Century Code; https://www.legis.nd.gov/cencode/t61.
html). After 2011, farmers in SD no longer needed to obtain a permit to install SD systems if the SD footprint
is less than 0.32 km? (80 acres). Thus, in small fields, SD is underreported.

The RFML uses the satellite products to identify changes in surface vegetation and soil water state that result
from SD. However, even within a single field, SD effects depend on the soils, slope, and vegetation as well as
the distance from the SD. The satellite product's spatial resolution (30 m) is relatively fine compared to a field
scale and captures within field variations of SD effects. Additionally, farmers install SD systems over their
fields with different SD intensities (e.g., depth and spacing) depending on field-specific soils, crop type,

CHO ET AL.


https://developers.google.com/earth-engine/resample
http://www.bdswd.com
https://www.sciencebase.gov
https://www.sciencebase.gov
https://www.legis.nd.gov/cencode/t61.html
https://www.legis.nd.gov/cencode/t61.html

'AND SPACESCIENCE

Water Resources Research 10.1029/2019WR024892

and cost (Blann et al., 2009). Thus, matching satellite detected effects of SD to permitted SD locations is some-
what problematic. Neither the USGS polygon outlines of fields with SD nor the static 30-m buffered SD lines
provided for the BASW SD, areas can be expected to perfectly capture the portion of the field that is affected
hydrologically by SD as resolved by 30-m satellite observations.

In this study, the annual accumulated SD permit records were used to classify SD and undrained (UD) areas.
The low-slope cropland areas (slope <2%) without the SD permit areas were defined as the UD areas. Pixels
were then randomly selected from the buffered SD and UD areas using a random sample generator in the R
package. For the BASW, the total number of sample pixels is 2164, 2150, 4710, and 4746 for 2009, 2011, 2014,
and 2017, respectively. For the ND-RRB, training sample pixels were directly selected from the accumulated
SD and UD areas for each year. There were total 9016, 8880, 8766, and 8754 sample pixels for 2009, 2011,
2014, and 2017, respectively. For each region and year, half of the sample pixels were randomly selected
as training pixels and the remaining 50% were used to validate the model outputs.

3.3. RFML Classification

RFML is an ensemble ML classification method comprised of a collection of tree-structured classifiers
(Breiman, 2001). The major principle behind ensemble learning methods is that a group of weak
classifiers (or learner) can be joined to form a strong classifier. In ensemble learning, two well-known
methods are boosting (Freund et al., 1999) and bootstrap aggregation (or “bagging”; Breiman, 1996) of
classification trees. Compared to a single classification tree, the bagging method is used to reduce the
variance of the tree. The method creates several subsets of bootstrapped samples from original training
data set chosen randomly with replacement. Each collection of subset samples is used to independently
train a classification tree. In the end, an ensemble of all different trees (models) is constructed. A simple
majority vote is taken for prediction which is more robust than a single classification tree. However,
bagging method as an ensemble learning often do not work because classification trees in bagging are
developed independently by using all variables. The bagging method is allowed to look through all
variables to choose the best split point (specific variable and its value) at each node in each tree. If there
exists one very strong variable for prediction, most or all of the bagged trees use the strong predictor in the
top split. In this case, most bagged trees look very similar and their predictions also highly correlated. This
means that the results from the highly correlated trees does not accomplish a substantial reduction in var-
iance over a single tree.

To overcome the limitation, the RFML is an improved extension over the bagging which applies
randomness to the procedure when taking a subset of variables rather than using all variables to grow
trees. In other word, while in decision tree each node is split using the best among all variables, in a
random forest each node is split by the best among the subset of variables (Liaw & Wiener, 2002). For
example, the first tree in a random forest is constructed using a few variables, not all 36 variables, and
the other trees can be developed by using different numbers of variables until each node is “pure.” The
development procedure in RFML model and classification processes are illustrated in Figure 2.

With the growth of satellite “big” data in hydrology, the RFML was widely used for tasks such as
streamflow prediction and flood risk assessment, which have been notoriously difficult with traditional
approaches (Belgiu & Dragut, 2016; Ma et al., 2017; Petty & Dhingra, 2018; Wang et al., 2015). In this
study, to determine if the RFML SD outputs are affected by spatial scale (basin versus watershed), we
developed and ran the RFML model using the same input variables for two regions with different
scales, separately.

For each of the training pixels, values were extracted from the 36 input layers to train the RFML algorithm.
The full training data set was used to train RF classifiers for each year in the GEE. An RF classifier was per-
formed with 300 trees. We applied the annual classifier to the corresponding year, 2009, 2011, 2014, or 2017.
After the initial classification, a 3 X 3 majority filter was applied to remove isolated SD pixels which were
sparsely scattered on maps, because SD systems are usually installed in fields (e.g., a few hundred meters).
In RFML, the outcome of implicit feature relevance for each variable is visualized by the Gini index
(Breiman, 2001). A Gini index analysis was conducted using R (Liaw & Wiener, 2002) because the GEE does
not provide relative importance metrics. The mean decrease in Gini index is a measure of how each variable
contributes to the RFML classification.
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Figure 2. Scheme of construction of the random forest machine learning (RFML) model using training data and classification processes using the RFML model for
classifying subsurface drainage (SD)/undrained (UD) areas

The Gini index, i(7), at each node () within a tree (T) of the RFML is defined as
i(t) = 1=, P;* within the tree T 1)

where P; is the fraction of the N; samples from class j out of the total of N samples at node 7 in T. For a binary
class j = {SD, UD} like the current study, the Gini index is calculated by

i(t) = 1-Psp’~Pup’ )

The decrease in Gini index, 4i(z), that results from splitting the samples to two subnodes tsp

Ng}iD) by threshold t; on variable 6 is

and typ (with respective sample fractions Psp = NI(,STD and Pyp =
defined as

Aig (7.') = l(T) _PSD'i(TSD)_PUD'i(TUD) (3)

Mean decrease in Gini index for a variable 6 is the average of a variable's total decrease in node
impurity over all trees Nt in the forest, weighted by the proportion of samples for all nodes 7 where
variable 6 is used.
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1
Mean decrease in Gini index(6) = N—ZTZTpr(T)-Aie(T, T) 4)
T
where pr(7) is the proportion N;/N of samples reaching 7.

3.4. Accuracy Assessment (Validation)

The BASW and USGS SD permit records were used separately to perform an accuracy assessment based on a
pixel-level confusion matrix and subwatershed- and subbasin-level statistics. For the BASW, a pixel-by-pixel
comparison was conducted. The number of correct and incorrect predictions was summarized as a confusion
matrix using the validation pixels, 1082, 1075, 2355, and 2373 pixels for years 2009, 2011, 2014, and 2017,
respectively. For the subwatershed-level accuracy assessment within BASW, the RFML SD area and the
SD permit area were aggregated for each of the 34 subwatersheds after masking all training pixels. For the
larger scale analysis, a pixel-level comparison was conducted in the same way with the BASW analysis, but
using a larger numbers of validation pixels, 4508, 4440, 4383, and 4377 pixels for years 2009, 2011, 2014,
and 2017, respectively. For the subbasin-level accuracy assessment, RFML SD areas and the USGS SD permit
data were aggregated and compared using the 48 NOAA river forecasting subbasins.

4. Results and Discussion

4.1. Classification Performance

The RFML classifier, using a combination of satellite-based vegetation, thermal, and soil moisture products,
along with soil property and climate variables, produced annual SD maps for BASW and ND-RRB in 2009,
2011, 2014, and 2017. Using 2,240 SD and 4,630 UD validation pixels, the pixel-level evaluation at BASW
had an overall accuracy of 77% (True positive: 1,018 SD pixels and True negative: 4,262 UD pixels) for the
four years with accuracies ranging 72% to 84% for individual years (Table 2). For undrained pixels, the
RFML model was 92% accurate with a range of 88% to 98%. SD pixels had relatively lower accuracies with
45% total accuracy. In the BASW, there is good qualitative agreement between the SD expansion maps, SD
permit areas, and RFML maps (Figure 3a). The RFML model results indicate that SD extent is 2.5%, 3.4%,
11.2%, and 16.1% of total BASW area for 2009, 2011, 2014, and 2017, respectively. These values are quantita-
tively similar to the extent found using the SD permit records, 1.9%, 3.2%, 10.3%, and 14.3%, from 2009, 2011,
2014, and 2017, respectively. The RFML SD extents are slightly greater than those determined from permit
data, by 0.2-1.8%.

Aggregated to the subwatershed-level (HUC12), the RFML SD estimates showed strong correlation (r = 0.88
0.96) with SD permit areas (Figure 3b). However, RFML consistently overestimated subsurface drained areas
in each subwatershed in BASW. The overestimated SD was also found in other dry years (see Figure S2).
A review of individual fields suggests that the RFML model may be capable of identifying SD effects
even in small areas within a field where SD systems can exist, but for which there is no permit record
(fields 1 and 2 in Figure 4). The RFML identified numerous small fields as having SD that were likely not
included in the permit record because permits are not required when a field is smaller than 0.32 km?
Additionally, the RFML detected the extent of the installed SD effect appears to frequently extend well
beyond the 30-m buffer recommended in earlier literature and expert guidance (all fields in Figure 4).

For the ND-RRB region, the RFML model achieved an overall accuracy of 87%. Class specific SD and UD
accuracies ranged from 20% to 59% and 98% to 99% with overall accuracies of 40% and 98%, respectively.
In both regions, overall accuracies in the early years (2009 and 2011) are higher than those in recent years
(2014 and 2017). SD systems were originally installed at those sites that needed them most. Therefore, train-
ing points developed in early years may retain stronger SD/UD character in this region. A subbasin-level
comparison between the RFML maps and the USGS SD permit areas conducted for the NOAA river forecast-
ing subbasins found r values ranged from 0.77 to 0.84 for the four years (Figure 5).

Again, the RFML overestimated the subsurface drained area, especially in the few subbasins that have dense
SD areas. There are very few SD areas in the northern part of the RRB. SD areas are concentrated in the
southern part of the RRB (Figure 6a). In North Dakota, the 2017 predicted SD map near Sheyenne
National Grassland showed good spatial agreement with the SD permit map (Figures 6b and c). However,
the RFML maps appear to underestimate SD areas in Minnesota areas compared to previous findings
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Table 2

Point-Based Accuracy Assessment for the Four Years (2009, 2011, 2014, and 2017) Between RFML Predicted Values and SD-Permit Based Data in the BASW

and the ND-RRB.

BdSW ND-RRB

Year Class RFML SD RFML UD Overall accuracy RFML SD RFML UD Overall accuracy

2009 SD 19.8% 4.3% 79.0% (850/1,076) 59.4% 1.0% 90.7% (4,170/4,596)
UD 80.2% 95.7% 40.6% 99.0%

2011 SD 35.9% 2.4% 83.9% (894/1,066) 40.3% 1.3% 86.6% (3,909/4,512)
UD 64.1% 97.6% 59.7% 98.7%

2014 SD 51.9% 8.7% 77.3% (1,820/2,355) 26.5% 2.1% 82.8% (3,693/4,461)
UD 48.1% 91.3% 73.5% 97.9%

2017 SD 48.7% 12.4% 72.3% (1,716/2,373) 19.8% 2.0% 81.6% (3,632/4,453)
UD 51.3% 87.6% 80.2% 98.0%

Overall accuracy 45.4% (1,018/2,240)  92.1% (4,262/4,630)  76.9% (5,280/6,870)  39.9% (1,380/3,460)  98.4% (14,024/14,247)  87.0% (15,204/17,708)

Note. RFML = random forest machine learning; SD = subsurface drainage; UD = undrained; BASW = Bois de Sioux Watershed; ND-RRB = North Dakota portion
of the RRB region.
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Figure 3. (a) Subsurface drainage expansion in Bois de Sioux watershed, Minnesota in 2009, 2011, 2014, and 2017 from subsurface drainage (SD) permit records
(red color) and predicted SD areas (blue color) derived by random forest machine learning (RFML) classification in the Google Earth Engine. Black color
indicates overlapped SD areas of the two sources. (b) Subwatershed (HUC12)-level accuracy assessment over Bois de Sioux Watershe (BASW), Minnesota
(N = 34). Subsurface drained permit area from the BASW district permit records compared with subsurface drained area from RFML classified maps
against a 1:1 line (light dashed). Agreement between the two data sets was assessed with correlation coefficient () metrics from simple linear regression
(trend line = thick dashed line, a = slope).
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Figure 4. Examples of fields showing areal difference between subsurface drainage (SD) permit area using buffer function and actual SD effective area in Bois de
Sioux watershed, Minnesota. These examples indicate that SD permit buffered areas in this study were underestimated in these fields compared to actual SD
effective areas. RFML = random forest machine learning; UD = undrained.

(Kelly et al., 2017; Nakagaki & Wieczorek, 2016). This indicates that additional training points in Minnesota
are required to develop more accurate RFML models.

4.2. Variable Importance

The mean decrease in Gini index was used to determine the relative contribution of each of the 36 input vari-
ables for the SD classification. Larger mean decreases in Gini index indicate variables that play a greater role
in partitioning the data into the SD/UD classification. Soil properties (available water content, awc, clay per-
centage, clay_perc, and saturated hydraulic conductivity, ksat, in this study) ranked the highest for both
regions (Figure 7). Climate variables, precipitation, and aridity also were important, especially for the larger
scales. For both regions, LST contributed strongly to the classification. Soil moisture showed minimal impor-
tance even though subsurface drains are intended to enhance drainage. This may be due to the coarse
resolution (25 km) from the SMOS satellite observations. The importance of spring thermal and wetness vari-
ables (e.g., LST and STR2) is noted. These indices warrant further study for use in SD/UD classification in
other agricultural regions. Interestingly, no vegetation-related variables were in the top 10. NDWI scored
relatively high among the four vegetation indices, indicating only water-related vegetation variables may
enhance accuracy in this region.
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Figure 5. National Oceanic and Atmospheric Administration (NOAA) subbasin-level accuracy assessment over North Dakota portion of the RRB region (N = 48).
NOAA subbasin is hydrological unit to operate the river forecasting system, NOAA River Forecast Centers. Subsurface drained permit area from the Bois de Sioux
Watershed district permit records compared with subsurface drained area from random forest machine learning classified maps against a 1:1 line (light dashed).
Agreement between the two data sets was assessed with correlation coefficient () metrics from simple linear regression (trend line = thick dashed line, a = slope).
Note that the ranges of y axis are different.
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Figure 6. (a) Subsurface drainage map from random forest machine learning (RFML) over the RRB in 2017. (b) A close-up map near Sheyenne National Grassland
in North Dakota. Blue colors indicate predicted subsurface drainage areas. Yellow colors indicate undrained area. (c) U.S. Geological Survey subsurface drainage
permit records (Finocchiaro, 2016) overlaying the National Land Cover Database 2011 (Yang et al., 2018) with same legends in Figure 1.

It is possible that the accuracies in the RFML SD map are improved with new relevant data as an input
variable. To test this, Sentinel-1 Synthetic Aperture Radar (SAR) Ground Range Detected C-band backscat-
ter data (VV polarization, ImageCollection ID: COPERNICUS/S1_GRD in GEE) was included in current
RFML model as additional input variables (two spring mean and range layers) in 2017. In BdSW, the
RFML SD map with the Sentinel-1 SAR information shows slightly better accuracies than the original
SD without Sentinel-1 SAR (Table 3). The point-based accuracies in RFML SD and UD predictions were
improved by 0.3% (from 48.7% to 49%) and 0.9% (from 87.6% to 88.5%), respectively (the overall accuracy
from 72.3% to 73.0%). In the subwatershed-level assessment, the two SD maps with/without Sentinel-1
SAR have the same correlations (r = 0.96) with similar slopes (Figure 8). However, in the ND-RRB, there
is no clear improvement in SD map accuracies based on the both point-based and subbasin-level assess-
ments. Given that the Sentinel-1 SAR backscattering signal is directly related to surface soil moisture,
we expect that any improvements of the SD prediction map by Sentinel-1 data would be much clearer in
a wet year. This also suggests that the current RFML SD model can be steadily improved by including
(or replacing) new SD-related variable information. The Sentinel-1 SAR and RFML SD maps were
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Figure 7. Variable importance in the random forest machine learning classification for two regions with different spatial scale (a) BASW and (b) ND-RRB. For

BdSW, variables with their short names were arranged from largest (top) to smallest (bottom) of the accumulated mean decrease in Gini index. Variables in

RRB was arranged in same order to those of BASW. The numbers at the edge of the bar indicate the ranks of each variable. Due to the absence of Soil Moisture Ocean
Salinity soil moisture in 2009, we calculated mean decreases in Gini index of the spring soil moisture mean and range by averaging the other three years' values.
Their full names were given in Table 1.

Table 3

provided in supporting information (Figure S3). (Note: Subwatershed-level accuracy assessments over the
BdASW using the 10 most important variables only are provided in Figure S4.)

4.3. Comparison With Recent Studies

In the RRB, Kelly et al. (2017) reported that the 2012 SD area was 1,340 km?, 2.0% of the entire basin
area, using the county-level agricultural census drainage data (USDA National Agricultural Statistics
Service, 2014). This is larger than our predicted SD areas (916 km?) for 2011. There are two potential reasons

Comparison of RFML SD Maps Between With and Without Sentinel-1 Synthetic Aperture Radar (SAR) C-Band Backscatter Data Based On Point-Based

Accuracy Assessments in 2017

Without Sentinel-1 With Sentinel-1

Year Class RFML SD RFML UD Overall Accuracy RFML SD RFML UD Overall Accuracy

BdSW SD 48.7% 12.4% 72.3% (1716/2373) 49.0% 11.5% 73.0% (1732/2373)
UD 51.3% 87.6% 51.0% 88.5%

ND-RRB SD 19.8% 2.0% 81.6% (3,632/4,453) 19.6% 1.8% 81.7% (3,639/4,453)
UD 80.2% 98.0% 80.4% 98.2%

Note. RFML = random forest machine learning; SD = subsurface drainage; UD = undrained; BASW = Bois de Sioux Watershed; ND-RRB = North Dakota portion

of the RRB region.
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Figure 8. Comparison of random forest machine learning (RFML) subsurface drainage (SD) maps between with and with-
out Sentinel-1 Synthetic Aperture Radar (SAR) C-band backscatter data based on (a) Subwatershed (HUC12)-level accu-
racy assessment over Bois de Sioux Watershed, Minnesota (N = 34) and (b) National Oceanic and Atmospheric
Administration subbasin-level accuracy assessment over North Dakota portion of the RRB region (ND-RRB; N = 48).

for the difference. They defined the “RRB region” as being upstream of Grand Forks, North Dakota in United
State (67,005 km?), which is the southern part of our RRB. We used the entire RRB region except for the area
in Canada (101,500 km?) where the northern part of the RRB is almost entirely undrained. There is also a
year gap between our results in 2011 and SD estimates in 2012 from Kelly et al. (2017). The USGS SD permit
records for the RRB region in North Dakota indicated an increase of 114 km” between the two years. There is
likely a similar increase in Minnesota (Dollinger et al., 2013).

Most previous studies were conducted at a smaller scale (e.g., field or catchment scale) than the current study
and used stepwise GIS-based analyses and aerial image processing techniques (Naz et al., 2009; Naz &
Bowling, 2008; Tetzlaff, Kuhr, Vereecken, & Wendland, 2009; Zhang et al., 2014). They showed spatial agree-
ment with overall accuracies of 78% (Tetzlaff, Kuhr, Vereecken, & Wendland, 2009) and 85% (Naz &
Bowling, 2008), which are similar to the performance of the current study (76-86%). Zhang et al. (2014)
and Naz and Bowling (2008) partially explained the causes of discrepancies in SD estimates within fields
in the current study (e.g., Figure 4). In Canadian subsurface drained fields, Zhang et al. (2014) used
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unmanned aerial vehicle-based NDVI and found within field NDVI differences due to SD line locations. Naz
and Bowling (2008) also found that within-field soil variability can lead to SD misclassification. Satellite data
were also used by Moller et al. (2018) to identify subsurface drained areas in a 43,000-km? region in Denmark
using an ensemble of ML models with similar input variables to the current study. Meller et al. (2018) is the
sole previous study applying ML methods to SD detection. However, they only used one month (March 2014)
of Landsat 8 imagery. Their final ensemble contained 36 unique models that predicted SD areas with an
accuracy of 76.5%. The results from our current study have better accuracies of 76.9% to 87.0%. This suggests
that using an ensemble of multisource satellite data including seasonal thermal, reflectance, and vegetation
input variables could improve results. They also found soil property (e.g., clay content) to be the most impor-
tant variable, followed by precipitation. This corresponds with our finding that available water content of the
soil is the most important variable. Clay percentage ranked in the top five in the RRB region. Climate vari-
ables are important at larger scales (Moller et al., 2018; Tetzlaff, Kuhr, & Wendland, 2009). Additionally, we
found that LST is the most important variable at a relatively small scale. This seems reasonable considering
that drainage systems have significant impacts on surface heat flux and land surface water dynamics. Jacobs
etal. (2017) found that spring LST, obtained by subtracting past mean values (2002-2006) from recent values
(2013-2017), has significant relationships (+* = 0.85 and 0.83, respectively) with the SD density based on a
subwatershed-level analysis.

Previous studies also identified uncertainties. Tetzlaff, Kuhr, and Wendland (2009) noted the difficulty of
acquiring aerial images at the right time associated with rainfall events and vegetation growth for a large
area. Sugg's (2007) GIS analysis based on soil drainage class and land cover in the Midwest United States
overestimated total SD in Minnesota by 3,643 km?® compared to the 1992 National Resource Inventory
(NRI) including inflated estimates of SD for the RRB region. Their GIS method identified large areas in
northwest Minnesota as SD areas because they are poorly drained soils and cultivated lands. However, the
actual SD installations result from not only geophysical characteristics but also socio-economic demand
for drainage (Blann et al., 2009). Care must be taken to differentiate between models that predict potential
areas requiring SD systems based on drainage properties versus those that are able to discern areas where
SD has been installed.

Belgiu and Dragut (2016) found that the RFML method can handle multisource satellite data dimensionality
and multicollinearity with fast processing and insensitivity to overfitting. However, it tends to be sensitive to
training samples (Colditz, 2015), which correspond with our finding in the process of this analysis. We found
that the outputs from the RFML method of the current study were sensitive to the proportion of SD/UD
training samples in several trials (not shown). The proportional allocation of SD/UD training samples to
each class based on SD permit records achieved the best results because the UD class has much larger areas
and requires more training samples than the SD class that occupies limited areas. Further investigations are
needed to better understand sample proportioning for RFML. Furthermore, studies are needed that compare
the performance among multiple ML methods.

5. Conclusion and Future Perspectives

Subsurface drainage systems were mapped at 30-m resolution by leveraging a ML technique and multi-
source “big” data sets from operational satellites, Landsat-based vegetation indices (NDVI, EVI, NDWI,
and GI) and STR, MODIS LST, and SMOS soil moisture, along with USGS National Land Cover and
Slope Datasets, USDA Cropland Data Layer, soil properties from POLARIS, and climate variables from
GRIDMET over the RRB region. RFML was conducted in the GEE cloud computing platform and used
SD permit records from the USGS and the BASW district for training and validation. The RFML maps
showed spatial agreement with SD permit records and correlated well with HUC12 subwatershed statistics.
The RFML maps appear to be capable of identifying within field variations in SD effects and capturing the
overall SD expansion over time including for those fields whose acreage was less than that required to be
permitted. Soil properties, climate variables, and LST are the strongest predictors of SD. Predictor variables
differed between the two scales, suggesting that SD models are sensitive to the spatial scale. Using the
Sentinel-1 SAR data, we demonstrated the RFML SD model could be further improved with new relevant
data. This ML technique can be readily applied to other regions and future years to provide updated infor-
mation about SD expansion to regional water managers and flood forecasters. However, this technique
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relies on the availability of baseline data sets (e.g., permit records) and more of these data sets may be
needed for other regions.

There are future opportunities to further improve the SD classification (or similar work with demanding land
use and land cover detection/classification) using ML algorithms. As a limitation of the current RFML
method like other nondeep learning algorithms, the input layers must be developed from raw data with for-
mulas or retrieval algorithms provided by experts for each input data and can be labor intensive. In this con-
text, deep learning (DL) has substantial potential to overcome this weakness. The DL method, a layered
structure of advanced artificial neural network algorithm, allows the automatic extraction of features from
raw data by capturing abstract spatial or temporal structures hidden in data (Bengio et al., 2013; Shen,
2018). Also, the use of new remote sensing platforms such as CubeSat and Unmanned Aerial Vehicles can
add value for enhanced SD identification (McCabe et al., 2017; NASA, 2017; NASA CubeSat Launch
Initiative, 2018; Planet Team, 2018). For example, more than 130 CubeSats launched by Planet (http://
www.planet.com) currently provide daily visible (Red-Green-Blue) and near-infrared imagery with ultrahigh
resolutions (e.g., 3 m and 72 cm), capturing daily near-global coverage (Planet Team, 2018). This imagery
could potentially greatly improve SD identification with ML or DL methods.
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