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A B S T R A C T

Knowledge of snow water equivalent (SWE) magnitude and spatial distribution are keys to improving snowmelt
flood predictions. Since the 1980s, the operational National Oceanic and Atmospheric Administration's (NOAA)
airborne gamma radiation soil moisture (SM) and SWE survey has provided over 20,000 SWE observations to
regional National Weather Service (NWS) River Forecast Centers (RFCs). Because the gamma SWE algorithm is
based on the difference in natural gamma emission measurements from the soil between bare (fall) and snow-
covered (winter) conditions, it requires a baseline fall SM for each flight line. The operational approach assumes
the fall SM remains constant throughout that winter's SWE survey. However, early-winter snowmelt and rainfall
events after the fall SM surveys have the potential to introduce large biases into airborne gamma SWE estimates.
In this study, operational airborne gamma radiation SWE measurements were improved by updating the baseline
fall SM with Soil Moisture Active Passive (SMAP) enhanced SM measurements immediately prior to winter onset
over the north-central and eastern United States and southern Canada from September 2015 to April 2018. The
operational airborne gamma SM had strong agreement with the SMAP SM (Pearson's correlation coefficient,
R = 0.69, unbiased root mean square difference, ubRMSD = 0.057 m3/m3), compared to the Advanced
Microwave Scanning Radiometer 2 (AMSR2) SM (R = 0.45, ubRMSD = 0.072 m3/m3) and the North American
Land Data Assimilation System Phase 2 (NLDAS-2) Mosaic SM products (R = 0.53, ubRMSD = 0.069 m3/m3) in
non-forested regions. The SMAP-enhanced gamma SWE was evaluated with satellite-based SWE (R = 0.57,
ubRMSD = 34 mm) from the Special Sensor Microwave Imager Sounder (SSMIS) and in-situ SWE
(R = 0.71–0.96) from the Soil Climate Analysis Network and United States Army Corps of Engineer (USACE) St.
Paul District, which had better agreement than the operational gamma SWE (R = 0.48, ubRMSD = 36 mm for
SSMIS and R = 0.65–0.75 for in-situ SWE). The results contribute to improving snowmelt flood predictions as
well as the accuracy of the NOAA SNOw Data Assimilation System.

1. Introduction

In snowmelt-dominated regions, water resources management and
flood predictions rely on accurate snowpack measurements (De Roo
et al., 2003; Liu et al., 2012). The most important snowpack measure
for streamflow prediction is snow water equivalent (SWE), which is the
depth of liquid water that would result if the entire snowpack melted
(Bergeron et al., 2016). In the north-central U.S. and southern Canada,
accurate flood predictions are needed to help communities prepare for
flood events and allocate flood management resources. However, flood
prediction is hampered by insufficient information about the magnitude

and spatial distribution of SWE and snowmelt across the landscape
(Tuttle et al., 2017; Schroeder et al., 2019). In the flood-prone Red
River of the North in Minnesota and North Dakota in U.S and Manitoba
in Canada (Rannie, 2015; Stadnyk et al., 2016; Todhunter, 2001;
Wazney and Clark, 2015), the National Weather Service (NWS) North
Central River Forecasting Center (NCRFC) overestimated a peak flow by
70% of the observed 2013 flow in the region. The flood forecasters
indicate that uncertainties in SWE spatial distribution as well as ante-
cedent soil moisture estimates were potential causes of the forecasting's
failure (personnel communication, Mike DeWeese NOAA NCRFC).

Since the late 1970s, satellite passive microwave sensors such as the
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Scanning Multichannel Microwave Radiometer (SMMR) aboard the
NASA Nimbus-7 satellite (temporal coverage: 1978–1987), and the
Special Sensor Microwave/Imager (SSM/I) and SSMIS aboard the
Defense Meteorological Satellite Program (DMSP) series of satellites
(F8, F11, F13, and F17: 1987 – current) have provided useful snowpack
information globally (Armstrong et al., 1994; Derksen et al., 2005;
Foster et al., 2005; Pulliainen and Hallikainen, 2001; Tait, 1998). The
Advanced Microwave Scanning Radiometer for Earth Observing System
(AMSR-E) aboard the NASA Aqua satellite and AMSR2, a follow-on
instrument of AMSR-E onboard the Japan Aerospace Exploration
Agency (JAXA) Global Change Observation Mission 1-Water (GCOM-
W1) satellite, have successfully provided snow depth and SWE for the
past two decades (Dai et al., 2012; Kelly et al., 2003; Kelly, 2009; Cho
et al., 2017). SWE from current satellite-based microwave sensors has
proven to be a valuable asset for improving snowmelt streamflow
predictions at a watershed scale (approximately 47,000 km2; Vuyovich
and Jacobs, 2011). Accurate SWE information at smaller scales remains
challenging due to the coarse spatial resolution (e.g. 25 km by 25 km;
625 km2) of passive microwave satellite observations. In addition, wet
snow and variations in snow grain size make the microwave satellite
retrieval of SWE difficult (Armstrong et al., 1993; Tuttle et al., 2017;
Vuyovich et al., 2017).

Snow observations from airborne platforms can fill the knowledge
gap between ground and satellite microwave remote sensing observa-
tions of snow (Painter et al., 2016). Airborne gamma-ray spectrometry
supports operational snowpack monitoring efforts (Bland et al., 1997;
Carroll, 2001; Grasty, 1982; Ishizaki et al., 2016). Since the 1980s,
airborne gamma radiation snow surveys conducted by the NOAA's Of-
fice of Water Prediction (OWP; and formerly by the National Opera-
tional Hydrologic Remote Sensing Center [NOHRSC]) have provided
SWE observations to regional NWS RFCs across the U.S. (Carroll, 2001;
Mote et al., 2003). The historical 40 years gamma SWE record was
proven as reliable long-term reference SWE observations across the U.S.
and southern Canada (Cho et al., 2019). The SWE data are also as-
similated into NOAA NWS's NOHRSC SNOw Data Assimilation System
(SNODAS) (Barrett, 2003; Clow et al., 2012; Hedrick et al., 2015).

Terrestrial gamma-ray emission from radioisotopes in surface soils
(~ top 20 cm) is attenuated by water in the liquid or solid form (Carroll,
2001; Peck et al., 1980). The difference between gamma radiation
measurements taken in the fall (without snow) and in the winter (with
snow) forms the basis of gamma-ray based airborne SWE measure-
ments. Each flight line's footprint is approximately 4.5–6 km2

(15–20 km long and about 300 m wide). Flight lines are measured once
in the fall (in October or November) and then revisited several times
throughout the winter (January to April) to estimate SWE (Carroll,
2001). The operational gamma SWE measurements are considered to be
accurate assuming that SM conditions measured during the fall survey
remain unchanged prior to winter surveys. However, SM conditions can
change due to late-season rainfall events and early-winter snowmelt,
which can result in large gamma SWE errors (e.g. NASA SnowEx Sci-
ence Plan; Durand et al., 2019). Tuttle et al. (2018), for example, found
a root mean square difference of 42.7 mm between AMSR-E SWE and
airborne gamma SWE in the Northern Great Plains, including parts of
the North Dakota, South Dakota, Minnesota, and Iowa, the United
States and southern Canadian prairies. They mentioned that a large
portion of the error was likely due to the assumption that SM remains
constant from fall into winter.

Beginning with the SMMR from 1978 to 1987, satellite active and
passive microwave sensors such as AMSR-E (2002−2011), ASCAT
(Advanced Scatterometer; 2007, 2012, and 2018 – present, from Metop-
A, B, and C, respectively) and SMOS (Soil Moisture and Ocean Salinity;
2010 – present) have provided surface SM. Two recent instruments are
the AMSR2 (2012 – present) and SMAP (Soil Moisture Active Passive;
2015 - present). The L-band radiometer aboard the National
Aeronautics and Space Administration's (NASA) SMAP satellite is well
suited for measuring surface SM (Entekhabi et al., 2010). SMAP was

launched in January 2015 and provides SM measurements globally
every 2–3 days. SMAP SM observations have been used to study soil
moisture dynamics (Akbar et al., 2018; Kim and Lakshmi, 2019; McColl
et al., 2017), which are important for hydrological and agricultural
applications, such as flood detection (Fournier et al., 2016), irrigation
signals (Lawston et al., 2017), and drought monitoring (Mishra et al.,
2017), at both global and regional scales. However, satellite micro-
wave-based SM products have well-known limitations for re-
presentative depths (~ upper few centimeters) and high uncertainties
over dense-vegetated areas (Jackson and Schmugge, 1991; Entekhabi
et al., 2010; Chan et al., 2018).

The physics used to estimate SM differ between gamma radiation
and satellite microwave sensing. The gamma radiation method uses the
difference between the naturally occurring terrestrial gamma radiation
flux from wet and dry soils (Carroll, 1981; Jones and Carroll, 1983).
The gamma flux from the ground is a function of the water mass and
constant radioisotope concentration near the surface. The mass of the
moisture regardless of any phase of water affects the attenuation. In-
creasing SM increases the gamma radiation flux attenuation and de-
creases the gamma flux at the ground surface. Passive microwave
sensors estimate the soil dielectric constant using the observed bright-
ness temperature (Tb) of the land surface (Jackson, 1993). Using the
estimated dielectric constant, a dielectric mixing model leverages the
large difference between the dielectric constants of the soil particles
(~4) and water (~80) to obtain the amount of SM with soil texture
information. In the single channel algorithm (SCA) in the NASA SMAP
standard products, the vertically polarized Tb observations by SMAP L-
band are converted to emissivity using ancillary physical temperature
(Chan et al., 2018; Dong et al., 2018; O’Neill et al., 2019; updated
2019). The derived emissivity is corrected for surface roughness and
vegetation to obtain soil emissivity. The soil emissivity is related to the
dielectric properties of the soil and the incidence angle. The Fresnel
reflection equation is used to determine the dielectric constant.

Land surface model (LSM) provides an alternative source of simu-
lated SM products and have been vetted in weather and climate models
as well as hydrological extreme monitoring (e.g. drought and floods)
(Koster et al., 2009). The North American Land Data Assimilation
System Phase 2 (NLDAS-2) provides simulated SM products for central
North America using four land surface models, Noah (Ek et al., 2003;
Wood et al., 1997), Mosaic (Koster and Suarez, 1996), Sacramento soil
moisture accounting (SAC, Burnash, 1995), and the Variable Infiltration
Capacity (VIC, Liang et al., 1994), which have high spatial (12.5 km by
12.5 km) and temporal (hourly) resolution (Xia et al., 2014).

This study seeks to identify which of the aforementioned SM pro-
ducts can improve airborne gamma SWE estimates by updating the
(“baseline”) fall operational gamma SM estimates to account for
changes in SM conditions after baseline gamma flights. This study aims
to answer the following four research questions:

1. Are temporal changes in SM from satellite and LSM model products
similar to each other after baseline gamma flights?

2. Which satellite and LSM SM products have strong agreement with
operational airborne gamma SM?

3. How much does updating the baseline operational gamma SM
change gamma SWE estimates?

4. Does the updated gamma SWE improve agreement with in-
dependent SWE observations?

2. Study concept

Operational airborne gamma radiation snow surveys rely on the
assumption that the SM measured during the fall survey remains con-
stant prior to winter SWE surveys. When SM conditions evolve due to
drying, rainfall events, and/or early-winter snowmelt, gamma SWE
estimates biases result. Fig. 1 shows an example of a SMAP soil moisture
time series from the “ND440” flight line footprint, the gamma SM
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estimate for the flight line, and the daily rainfall and soil temperature
data in Mooreton, North Dakota from North Dakota Agricultural
Weather Network (NDAWN, https://ndawn.ndsu.nodak.edu) are also
shown. The figure illustrates the soil moisture changes after the fall
baseline gamma SM survey and their potential influence on the winter
gamma SWE estimates. From the 9 November 2016 baseline gamma SM
survey, SMAP SM evolves until 1 December 2017 with a net 0.12 m3/
m3 increase. The gamma SWE estimated on 18 January 2017 using the
baseline gamma SM value attributes all the additional gamma radiation
attenuation in the winter measurement to SWE rather than accounting
for the increase in soil moisture post-baseline survey. If the baseline
gamma SM were updated to reflect the fall SM changes, then the op-
erational gamma SWE should be reduced to reflect that portion of the
attenuation of gamma radiation due to an increase in SM. Thus, gamma
SWE estimates may be improved using an updated gamma SM estimate.

3. Study area

The study area comprises parts of the north-central and northeast
United States and southern Canada (Fig. 2), including parts of four RFCs
(Missouri Basin RFC (MBRFC), North-Central RFC (NCRFC), North-East
RFC (NERFC), and Mid-Atlantic RFC (MARFC)) and two Canadian
Provinces including Saskatchewan (SK) and Manitoba (Winnipeg). The
RFC boundaries (black lines) were designated by the NOAA NWS In-
tegrated Hydrologic Automated Basin Boundary System to support river
flow and flood forecasting throughout the United States. Gamma sur-
veys occur in each regional RFC. The gamma flight lines in Fig. 2 were
flown from September 2015 to April 2018 (black lines). The flight times
range from 9 AM to 6 PM according to weather conditions and opera-
tions schedule (https://www.nohrsc.noaa.gov/snowsurvey/photos/).
The region is dominated by three land cover types, forest (19%, De-
ciduous broadleaf forest and Mixed forest), croplands (77%, Croplands
and Cropland/Natural vegetation mosaic), and grasslands (4%) from
Global Mosaics of the Moderate Resolution Image Spectroradiometer
(MODIS) land cover type data (MCD12Q1) using the International
Geosphere-Biosphere Programme (IGBP) Land Cover Type Classifica-
tion (Channan et al., 2014). Airborne gamma surveys in the western
U.S. were excluded because most of their SM estimates from 2015 to
2018 used a subjective estimate (‘SE’) or unknown type (‘0’) (https://
www.nohrsc.noaa.gov/snowsurvey).

4. Data and methodology

This study uses a number of SM and SWE products (Table 1). The

details of each data product appear in the following sections.

4.1. NOAA airborne gamma survey

The NWS gamma flight line network includes over 2400 flight lines
covering 29 U.S. states and seven Canadian provinces (Carroll, 2001;
Peck et al., 1980). Since 1979, the NWS gamma radiation snow survey
program has made about 27,000 gamma SWE measurements over
North America via the NOHRSC website (http://www.nohrsc.noaa.
gov/snowsurvey/). This study uses the 770 airborne SWE observations
made from 2015 to 2018 with 413 flight lines in the study area in-
cluding 648 observations in non-forested areas. A typical flight line is
approximately 300 m wide and 16 km long (5 km2 footprint). The
gamma survey SM and SWE observations are areal-average values for
each flight line footprint, while satellite and model products used in this
study are provided as pixel values.

The airborne gamma radiation technique measures the attenuation
of the terrestrial gamma radiation signal due to the intervening water
mass (Carroll, 2001; Peck et al., 1971). The gamma flux near the ground
surface originates primarily from the 40K, 208Tl, and 238U radioisotopes
in the soil. In a typical soil, 91% of the gamma radiation signal is
emitted from the top 10 cm of the soil and 96% and 99% from the top
20 cm and 30 cm, respectively (Zotimov, 1968). Airborne gamma fall
SM measurements can be made for a given flight line if background
terrestrial gamma count rates (40K0, 208Tl0, and gross count, GC0) and
coincident background SM (SM0), and gamma count rates are available.
Ground-sampled SM data collected over calibration flight lines are used
to determine background SM (Jones and Carroll, 1983). Three in-
dependent SM values are calculated using the attenuation of the gamma
radiation counts. SM values are calculated using gamma count rates
from the 40K window (1.36–1.56 MeV), 208Tl (2.41–2.81 MeV) window,
and GC spectrum (0.41 to 3.0 MeV) by the following equations (Carroll,
1981, 2001).
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Fig. 1. An example time series of satellite/
model soil moisture (SMAP enhanced products
in this figure) within the given flight line foot-
print and NOAA operational gamma soil
moisture along with daily rainfall and air tem-
perature in 2016 to 2017 from a North Dakota
Agricultural Weather Network (NDAWN) station
at Mooreton, ND. The ND440 flight line was
flown over the Mooreton station. The increase in
SMAP soil moisture in December was due to
early snowmelt from 26 to 30, November. The
errors of the SMAP product
(ubRMSE<0.04 m3/m3) meet the mission per-
formance criteria from previous studies (Chan
et al., 2018; Colliander et al., 2017).
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= ∙ + ∙ + ∙SM SM K SM Tl SM GC0.346 ( ) 0.518 ( ) 0.136 ( )c c c c
40 208 (4)

where 40Kc, 208Tlc, and GCc are current uncollided gamma count rates
in windows 40K, 208Tl, and GC, respectively, and 40K0, 208Tl0, and GC0

are background uncollided gamma count rates. A single current SM
estimate (SMc, in units of percent by weight) is calculated by multi-
plying the three current SM estimates by weighting factors, 0.346,
0.518, and 0.136 for 40K, 208Tl, and GC, respectively (Jones and Carroll,
1983). Only the single, weighted SM (SMc) is reported as antecedent fall
SM which is used in this study. The fall SM survey data are available as
Standard Hydrometeorological Exchange Format (SHEF) product
through the NWS NOHRSC website (https://www.nohrsc.noaa.gov/
snowsurvey/).

The operational gamma SWE measurements are made using the
following equations:

⎜ ⎟ ⎜ ⎟= ⎡

⎣
⎢

⎛
⎝

⎞
⎠

− ⎛
⎝

+
+

⎞
⎠

⎤

⎦
⎥SWE K

A
ln K

K
ln SM K

SM K
( ) 1 · 100 1.11· ( )

100 1.11· ( )
b

s

s

b

40
40

40

40

40
(5)

⎜ ⎟ ⎜ ⎟= ⎡

⎣
⎢

⎛
⎝

⎞
⎠

− ⎛
⎝

+
+

⎞
⎠

⎤

⎦
⎥SWE Tl

A
ln Tl

Tl
ln SM Tl

SM Tl
( ) 1 · 100 1.11· ( )

100 1.11· ( )
b

s

s

b

208
208

208

208

208
(6)

⎜ ⎟⎜ ⎟= ⎡
⎣⎢

⎛
⎝

⎞
⎠

− ⎛
⎝

+
+

⎞
⎠

⎤
⎦⎥

SWE GC
A

ln GC
GC

ln SM GC
SM GC

( ) 1 · 100 1.11· ( )
100 1.11· ( )

b

s

s

b (7)

= ∙ + ∙ + ∙SWE SWE K SWE Tl SWE GC0.346 ( ) 0.518 ( ) 0.136 ( )gam
40 208

oper

(8)

where SM(40Kb), SM(208Tlb), and SM(GCb) are SM values by weight (%)
over bare ground and SM(40Ks), SM(208Tls), and SM(GCs) are SM values
over snow-cover ground. 40Kb, 208Tlb, and GCb are uncollided gamma
count rates over bare ground and 40Ks, 208Tls, and GCs for snow-covered
ground. SWEgamoper

is the operational gamma radiation SWE estimate (g/
cm2) reported in the SHEF product (Carroll and Schaake Jr., 1983;
Carroll, 2001). Based on previous studies, errors of the airborne gamma
SM measurement range from - 9.9 to 2.9% of percent bias (Carroll,
1981). Errors of the gamma SWE were about 12.1% over agricultural
areas in the Upper Midwest U.S. and 1.3–24% over forested areas of the
Lake Superior basin, U.S. and Saint John River basin, Canada. (Carroll
and Carroll, 1989a; Carroll, 2001; Glynn et al., 1988). Glynn et al.
(1988) indicate that the potential sources of errors in gamma SWE es-
timates include gamma count statistics, navigation, and biomass.

The airborne gamma SM estimate is provided as “percent SM by
weight” which is the weight of SM divided by the weight of dry soil
multiplied by 100 from approximately the top 20 cm of soil. To

Fig. 2. Land cover map of the study area of the north-central and eastern United States and southern Canada with the NOAA airborne gamma flight lines surveyed
from 2015 to 2018 (N = 574, blue lines with cyan borders) with River Forecasting Center (RFC) boundaries (black lines) along with U.S. states and Canadian
province boundaries (gray lines). The land cover map is from Global Mosaics of the Moderate Resolution Image Spectroradiometer (MODIS) land cover type product
(MCD12Q1). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Summary of soil moisture and snow water equivalent products including data type, period, footprint/grid size, and source used in this study.

Data Product Type Period Footprint/Grid size Source

SM & SWE NOAA gamma Airborne gamma radiation 2015–2018 5–7 km2 NOAA
SM SMAP enhanced Satellite passive microwave 2015–2017 9 km NASA
SM NLDAS-2 Mosaic Land surface model 2015–2017 12.5 km NOAA
SM AMSR2 LPRM Satellite passive microwave 2015–2017 25 km NASA
SWE SSMIS Satellite passive microwave 2016–2018 25 km NASA
SWE GlobSnow Assimilation 2016–2018 25 km ESA
SWE SCAN In-situ station 2017–2018 point USDA
SWE USACE In-situ field survey 2017–2018 point USACE
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compare the gamma SM (by weight, %) to the gridded SM products
(volumetric content, m3/m3), the units of SM were matched. The per-
cent airborne gamma SM by weight was converted to volumetric SM
contents (m3/m3) using the constant bulk density (1.295 g/cm3) based
on a dominant soil bulk density in this study area (Dobson et al., 1985).
Our results show that using a constant bulk density as compared to
individual bulk density for each gamma footprint using the 1-km PO-
LARIS soil datasets (available at www.polaris.earth; Chaney et al.,
2016) does not generate additional residual errors in the comparison
between gamma SM and other SM products (Figs. S1 & S2).

4.2. Soil moisture (SM)

4.2.1. SMAP enhanced SM
The NASA's SMAP satellite's L-band radiometer has provided global

SM measurements at 6:00 A.M./P.M. local time at 2–3 days revisit time
since March 31, 2015 (Chan et al., 2016; Entekhabi et al., 2010). The
SMAP SM product has been validated using ground-based observations
and various assimilation products at a global scale (Kim et al., 2018;
Colliander et al., 2017; Ma et al., 2019; Zhang et al., 2019; Zwieback
et al., 2018).

The SMAP enhanced L3 SM, released in December 2016, is derived
from SMAP Level-1C (L1C) interpolated brightness temperatures using
Backus-Gilbert optimal interpolation techniques (O'Neill et al., 2018).
The SMAP enhanced SM product (9 × 9 km2) retrieved by the SCA (V-
pol) has a finer grid posting relative to the SMAP native products
(36 × 36 km2) although the enhanced footprint's contributing domain
is ~ 33 km is similar to the native 36 km resolution (Chan et al., 2018).
In this study, the SMAP level 3 radiometer global daily EASE-Grid 2.0
(Equal-Area Scalable Earth Grid 2.0) enhanced soil moisture (V002) for
the descending overpass (6 A.M.) is used from September 2015 to
March 2018. This product (V002) has an improved depth correction for
effective soil temperature, which reduced the dry bias in the initial
version product (V001) (O'Neill et al., 2018).

4.2.2. AMSR2 SM
The AMSR2 passive microwave sensor, a follow-on of the AMSR-E

sensor aboard the Aqua satellite, was launched on the GCOM-W1 sa-
tellite in May 2012 (Imaoka et al., 2010). The AMSR2 provides daily
scans at 1:30 A.M. (descending)/P.M. (ascending) local time with
1–2 days revisit time. There are three widely used AMSR2 surface SM
products generated from different algorithms, the LPRM (Land Para-
meter Retrieval Model) (Owe et al., 2008), the JAXA algorithm (Koike,
2013; Cho et al., 2015) and the SCA (Single Channel Algorithm;
Bindlish et al., 2018). The LPRM uses the dual-polarization Tb ob-
servations at individual (C or X) bands to retrieve surface SM and ve-
getation optical depth via a forward radiative transfer model (Owe
et al., 2008). This study uses the LPRM AMSR2, Level 3 gridded X-band
(10.7 GHz) SM from the ascending overpass, expressed on a regular 1/
4° spatial grid (25 km).

4.2.3. NLDAS-2 Mosaic SM
The NLDAS-2 is an offline modeling system, running four land

surface models [Noah, Mosaic, Sacramento soil moisture accounting
(SAC), and the Variable Infiltration Capacity (VIC) model] on a 1/8°
spatial grid (12.5 km) over the continental United States (CONUS).
NLDAS-2 uses meteorological forcing data (e.g. downward short/long-
wave radiation, precipitation, 2-m air temperature, 2-m specific hu-
midity, and 10-m wind speed) to run the land surface models to pro-
duce water and energy fluxes and state variables (Xia et al., 2012). The
NLDAS-2 has SM products from four land surface models (Mosaic,
Noah, SAC, and VIC) (Xia et al., 2014). The Mosaic model has three soil
layers: 0–10 cm, 10–60 cm, and 60–200 cm (Koster and Suarez, 1996).
In this study, the Mosaic 12:00 PM SM at a depth of 0–10 cm is used to
represent modeled SM values, because the Mosaic SM had a stronger
agreement with the airborne gamma SM than the Noah and VIC SM

products from the surface soil layer [0–10 cm] (Fig. S3). The SAC SM
was not compared because it uses a single soil layer with no surface soil
moisture.

In summary, this study uses SMAP and AMSR2 SM products as well
as the NLDAS-2 Mosaic SM product. Active microwave satellite (e.g.
ASCAT) SM is not included because recent studies found that passive
microwave SM (e.g. SMAP/SMOS) products generally have a stronger
agreement with in-situ observations or reanalysis SM products than
ASCAT SM over our study region (Al-Yaari et al., 2014; Kim et al.,
2018).

4.3. Snow water equivalent (SWE)

4.3.1. SSMIS SWE
The SSMIS sensor onboard the Defense Meteorological Satellite

Program (DMSP) F17 platform has provided daily brightness tempera-
ture (Tb) measurements with near-complete global coverage from
December 2006 to the present. In this study, F17 SSMIS SWE
(SWESSMIS) was estimated using the Chang-type algorithm (Armstrong
and Brodzik, 2001; Chang et al., 1987) with modified coefficients de-
veloped by Brodzik (2014) as follows:

= − −SWE a Tb b Tb c· ·SSMIS H GHz H GHz,19 ,37 (9)

where a, b, and c are given as 4.807 mm/K, 4.792 mm/K, and
6.036 mm, respectively. TbH, 19GHz and TbH, 37GHz are the brightness
temperature at 19 and 37 GHz horizontal polarization, respectively.
The DMSP SSM/I-SSMIS Pathfinder Daily EASE-Grid Brightness Tem-
peratures (Version 2) are provided on a 25-km grid on the National
Snow & Ice Data Center website (https://nsidc.org/data/nsidc-0032;
Armstrong et al., 1994). SSMIS Tb data from the descending overpass (6
A.M.) were used to minimize the potential error by wet snow (Derksen
et al., 2000).

4.3.2. GlobSnow SWE
The European Space Agency GlobSnow project provides long-term

gridded daily SWE maps with 25 km × 25 km spatial resolution from
1979 to current for the Northern Hemisphere, except for glaciers and
mountainous regions (Takala et al., 2011). The GlobSnow SWE utilizes
an assimilation approach, which combines ground-based synoptic snow
depth station data (using constant snow density, 0.24 kg/m2) with
passive microwave satellite measurements via the Helsinki University
of Technology (HUT) snow emission model (Takala et al., 2011;
Pulliainen, 2006). Ground-based point snow depth measurements are
from the World Meteorological Organization weather stations. The
GlobSnow SWE has two versions, GlobSnow-2 from 1979 to 2016 (ar-
chive_v2.0; http://www.globsnow.info/swe/archive_v2.0/) and
GlobSnow-1 from 2011 to current (near-real-time; http://www.
globsnow.info/swe/nrt/). The retrieval accuracy is the same between
the GlobSnow-1 and 2, but the GlobSnow-2 SWE was improved for
northern boreal forest and tundra regions (Luojus et al., 2014). Due to
the current study period from 2015 to 2018, the daily GlobSnow-1 SWE
was used to evaluate the updated gamma SWE.

4.3.3. Ground-based SWE
Compared to the western U.S., there are few SWE stations in the

north-central and northeastern U.S. Daily SWE measurements at the
Glacial Ridge, Minnesota (ID: 2050; Latitude/Longitude: 47.72°/96.26°;
Elevation: 343 m) operated by the United States Department of
Agriculture (USDA) Soil Climate Analysis Network (SCAN) were com-
pared to the updated gamma SWE measurements. The SCAN site land
cover is “croplands” with a “prairie” snow classification. Two gamma
flight lines, MN119 and MN120, are located near the SCAN site with the
flight lines' midpoints approximately 9.8 km (northwards) and 29.7 km
(southwards), respectively, from the SCAN site. The two flight lines'
land cover is also “cropland” and their elevations are about the same
(Fig. S4). Further details can be found on the SCAN website (https://
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wcc.sc.egov.usda.gov/nwcc/site?sitenum=2050).
The United States Army Corps of Engineer (USACE) ground-based

snow survey data were collected by the USACE St. Paul District to de-
termine snowpack SWE for spring flood risk assessment and water re-
sources management. Their survey measurements sampled the snow-
pack at representative locations. At each site and date, at least four SWE
samples were taken, each approximately 3–4 m apart, using a snow
tube (3.81 cm diameter), then averaged to a single mean SWE value.
This study uses the weekly USACE SWE observations from 2017 to 2018
at Baldhill, ND (Latitude/Longitude: 47.03°/−98.08°), Orwell, MN
(46.22°/−96.18°), and Traverse, MN (45.86°/−96.57°). The gamma
flight lines closest to each site with a distance between the midpoint of
flight line and the site are ND432 and ND433 (10.6 km and 26.3 km
from Baldhill), MN126 and MN129 (24.8 km and 19.2 km from Orwell),
and ND441 and MN124 (13.8 km and 22.6 km from Orwell). The de-
tailed gamma flight line locations are provided in Supplementary ma-
terial (Fig. S4).

4.4. Methodology

For comparison to the airborne gamma SWE data, the satellite or
model pixels overlapped by the given flight line footprint were
weighted according to a portion of the footprint within each pixel. Only
flight lines having> 50% of the footprint covered by satellite ob-
servations were used in this analysis. For a detailed process with a
schematic diagram, please refer to Tuttle et al. (2018).

After one SM product (in this case, the SMAP enhanced SM) was
selected based on the statistical agreement (e.g. correlation coefficient
and unbiased root mean square difference) with operational baseline
gamma SM, a linear regression model that minimizes the sum of
squared residuals (εi) was developed to relate coincident gamma SM
(SMgam, i) and the satellite (or model) SM (SMsat, i) measurements.

= + ±SM a SM b ε·gam i sat i i, , (10)

where i is flight line number, a is the slope and b is the y-intercept of the
linear regression equation. εi is a residual error (m3/m3) between op-
erational gamma SM and satellite (or model) SM for each flight line.
Based on the model, new, updated gamma SM estimates were calcu-
lated by applying the latest antecedent SM of the chosen product into
the linear regression model. It is assumed that the residual, εi, is largely
generated from differences between the two products' representative
areas and land surface characteristics for each flight line. Thus, the
residuals are included in the updated gamma SM.

The change in airborne gamma SWE, ΔSWEgam, i, resulting from a
change in antecedent SM in the unit of percentage (%) in soil was
calculated using Carroll (2001) as follows:

∆ = ⎡

⎣
⎢

⎛

⎝
⎜

+
+

⎞

⎠
⎟

⎤

⎦
⎥SWE

A
SM
SM

25.4 · ln
100 1.11·
100 1.11·gam i

gam i

gam i
,

,

,

oper

upd (11)

where ΔSWEgam, i is the change in snow water equivalent (mm), A is a
radiation attenuation coefficient of water which is equal to 0.1482
(Carroll, 2001). 25.4 is used to convert “inches” to “mm” from Eq. 3 in
Carroll (2001). 1.11 represents the ratio of gamma radiation attenua-
tion in water to air (Carroll, 1981). SMgamoper, i is operational gamma SM
by weight (%) measured in the fall survey and SMgamupd, i is the updated
gamma SM by weight (%). A schematic diagram of the methodology is
provided in the Supplementary materials (Fig. S5). The agreement be-
tween airborne gamma survey and satellite/model SM (or SWE) pro-
ducts was quantified by the Pearson's linear correlation coefficient, R,
the mean bias, Bias, the root mean square difference, RMSD, and the
unbiased RMSD, ubRMSD. The equations are available in the Supple-
mentary material (Text S1).

5. Results

5.1. Change in the soil moisture after baseline gamma flights from satellite
and model products

Fig. 3 compares the change in NLDAS-2, SMAP, and AMSR2 re-
gional SM maps from the dates of the baseline fall gamma flights until
the last observation before freeze onset. As an example, in 2016 most
gamma SM flights occurred about 25 October and the latest observation
available prior to freezing onset was on 29 November. After the fall
gamma flights, SM changes vary by year and location. These changes
are typically caused by later rainfall, early-winter snowmelt, and/or
freeze/thaw events, suggesting that an adjustment of the baseline
gamma SM is necessary for accurate gamma SWE survey.

In 2015, the change in NLDAS-2 and SMAP SM from November 25
to December 12 show similar spatial patterns. Surface soils became
wetter in the north-central U.S. and drier in the northeastern U.S. The
increases in SMAP SM are greater than NLDAS in Minnesota, North
Dakota, and South Dakota where many of the gamma flights occurred.
The AMSR2 SM change is remarkably different from NLDAS-2 and
SMAP SM. AMSR2 shows drying in Minnesota and most Canadian
provinces. In 2016, SM changes clearly differ by data source between
25 October and 29 November. SMAP has a strong drying signal of up to
−0.17 m3/m3 in north-central and eastern U.S. as well as
Saskatchewan and Manitoba, Canada. However, NLDAS-2 and AMSR2
SM in the same regions get wetter by up to 0.12 and 0.25 m3/m3, re-
spectively. In the Midwest, AMSR2 shows that SM increases exceed
0.25 m3/m3. In 2017, there are clear decreases in NLDAS-2 and SMAP
SM from 25 October to 13 December in the Midwest. The drying of
SMAP (~0.20 m3/m3) is stronger than that of NLDAS-2 (~0.10 m3/m3).
NLDAS-2 captures modest wetting in Canada, which is not seen by
SMAP and AMSR2 SM because these datasets are provided for only
limited areas in Canada, due to data masking from soil freeze or snow
cover.

In general, SMAP SM changes are spatially similar to NLDAS-2 SM
changes but have amplified drying (and wetting). AMSR2 has extreme
SM changes considering the normal range of volumetric SM and differs
spatially from SMAP and NLDAS-2, which may reflect the much thinner
and closer-to-the-surface sensing depth of AMSR2 as compared to SMAP
and NLDAS-2's deeper sensing depths.

5.2. Airborne gamma SM versus satellite and model SM products

To identify which satellite or model SM product agrees best with
gamma SM, the gamma SM data were compared to NLDAS-2, SMAP,
and AMSR2 SM products. Because the performance of the microwave
SM products typically weakens with increasing vegetation density
(Jackson and Schmugge, 1991; Wang et al., 1982; Mladenova et al.,
2014), the comparison is conducted with and without forest areas.
When forested areas are included, NLDAS-2 SM has better agreement
with operational gamma SM than the two satellite SM products
(Table 1). There is little difference in agreement between NLDAS-2
mosaic SM and operational gamma SM with/without forest classes
(Fig. 4a & b). However, the agreement between SMAP and gamma SM
clearly differs by a land cover (Fig. 4c & d). A majority of the SMAP SM
values with a wet bias occur for flights over forests. For the Deciduous
broadleaf forest and Mixed forest classes, there are large errors with
SMAP SM compared to gamma SM (Bias: 0.11 and 0.19 m3/m3 and
RMSD: 0.17 and 0.21 m3/m3, respectively). For the AMSR2 comparison,
most SM values over forested areas were excluded due to poor data
quality before the analysis, but the remaining SM values show a wet
bias, similar to SMAP SM, in forested regions (Fig. 4e). AMSR2 SM has
an extreme wet bias (0.13 m3/m3) even in non-forested areas. In non-
forested regions, SMAP SM shows very strong agreement with gamma
SM as compared to AMSR2 and NLDAS-2 SM (Table 2). The results
indicate that SMAP SM values from forested areas (e.g. Deciduous

E. Cho, et al. Remote Sensing of Environment 240 (2020) 111668

7

https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=2050


broadleaf forest and Mixed forest) do not agree with the gamma ob-
servations and these land uses should be excluded if updating gamma
SWE with SMAP SM. A linear regression model between SMAP and
operational gamma SM [Eq. (10)] was developed using only the values
from non-forested regions for the next step. Comparison between op-
erational gamma SM and SMAP, AMSR2, and NLDAS-2 SM products for
forested regions only, are provided in Fig. S6.

5.3. Enhancement of gamma SWE by updating baseline SM

When the operational, baseline gamma SM in non-forested regions
from 2015 to 2017 are updated using SMAP SM, the gamma SWE values
change. Fig. 5a displays SMAP SM changes measured between the date
of the fall baseline gamma flights and the date of the last SM ob-
servation before freeze-up as well as the corresponding operational and
SMAP-updated airborne gamma SM estimates. The SMAP-updated
gamma SM were calculated using the linear regression model between
airborne gamma and SMAP SM, slope (a) = 0.69 and y-intercept
(b) = 0.083 [Eq. (10)]. The slope indicates that SMAP SM is more
sensitive than gamma SM. Considering the two methods' different re-
presentative soil depths, it is reasonable that SMAP's surface SM would
tend to have higher variability than the deeper gamma SM.

The SMAP SM immediately before freeze-up (mean: 0.16 m3/m3,
median: 0.12 m3/m3) is typically lower than the SM on the date of the
fall baseline gamma flights (mean: 0.21 m3/m3, median: 0.20 m3/m3),
indicating that for this study period most of the region dried in late fall
to early winter. Note: a large portion of the gamma SM flights (193 of
total 277 flight lines) occurred in fall 2016 when there was an average
of 0.05 m3/m3 (median: 0.09 m3/m3) decrease in SMAP SM. As the
SMAP SM differences between the baseline and latest available SM
decrease, the gamma SM differences should also decrease following the
linear regression model [Eq. (10)]. The SMAP-updated gamma SM is
drier by an average of 0.03 m3/m3 than the operational baseline gamma
SM. The SMAP-updated gamma SM also appears to have a greater in-
terquartile range (IQR; total: 0.12 m3/m3) than the operational baseline
gamma SM (0.08 m3/m3). This indicates that the residual values (εi) in
the linear regression model comprise a considerable proportion of the
variation in SMAP-updated gamma SM.

Using the SMAP-updated SM for each flight footprint, a new, SMAP-
updated gamma SWE was calculated using Eq. (10). The original, op-
erational gamma SWE values (mean: 72 mm, median: 69 mm) were
adjusted upward by 15% (mean: 82 mm, median: 79 mm) when ac-
counting for the changes in baseline SM (Fig. 5b). In summary, de-
creases in the baseline SM by an average of 0.03 m3/m3 (gamma) and
0.05 m3/m3 (SMAP) generate average increases in gamma SWE of
about 10 mm. Individual gamma SWE estimates have different SM
changes due to the variations by year and flight line as presented in
Fig. 6. 75% of the SM values became drier and the remaining 25%
became wetter, but with SM differences ranging from 0.22 to
−0.25 m3/m3 and gamma SWE changes ranging from −30 to 41 mm.

5.4. Evaluation of the updated gamma SWE

To evaluate the SMAP-updated gamma SWE, satellite-based SWE
measurements from SSMIS passive microwave sensors were used. Flight
lines in forest-dominant regions were excluded because SSMIS under-
estimates SWE compared to airborne gamma SWE over the forested
areas (Fig. S7). Fig. 7 shows that the SSMIS SWE has better agreement
with SMAP-updated gamma SWE than with the operational gamma
SWE. When the SSMIS SWE exceeds 125 mm, the SMAP-updated
gamma SWE values with high DOY converge toward the 1:1 line. The
agreement between the two SWE estimates was improved for each land
cover type when gamma SWE was updated with SMAP SM (Fig. S8). In

Fig. 4. Comparison of NOAA airborne gamma soil moisture with (a, b) Phase 2
of the North American Land Data Assimilation System (NLDAS-2) Mosaic SM,
(c, d) Soil Moisture Active Passive (SMAP) Level 3 enhanced soil moisture, and
(e, f) Advanced Microwave Scanning Radiometer 2 (AMSR2) SM within the
given flight line footprints with/without the SM values from forested areas.

Table 2
Agreement between NOAA airborne gamma SM and NLDAS-2 Mosaic SM, SMAP enhanced SM, and AMSR2 SM with/without the SM values from forested areas.

Data with forested areas without forested areas

N R ubRMSD (m3/m3) RMSD
(m3/m3)

Bias
(m3/m3)

N R ubRMSD
(m3/m3)

RMSD
(m3/m3)

Bias
(m3/m3)

NLDAS-2 342 0.53 0.07 0.08 −0.03 277 0.53 0.07 0.08 −0.03
SMAP 342 0.52 0.10 0.10 0.02 277 0.69 0.06 0.06 −0.02
AMSR2 287 0.43 0.08 0.15 0.13 278 0.45 0.07 0.15 0.13
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grassland, the SSMIS SWE had a higher correlation and lower ubRMSD
with SMAP-updated gamma SWE as compared to the agreement with
the operational SWE. There were also modest improvements in the
agreement statistics in croplands, except for Bias, which increases from
−1.8 to −11 mm.

To further validate the SMAP-updated gamma SWE, ground-based
SWE measurements were obtained from the Glacial Ridge SCAN site
snow pillow. Even though there are only five coincident gamma SWE
observations, the gamma SWE captures the SWE evolution of the in-situ
data for the two years (Fig. 8). In 2017, gamma SWE updates were only
3 mm because of the limited changes in the baseline SM. In 2018, the
operational gamma SWE values are updated by about 20 mm due to the
large decrease in the antecedent SM. The updated gamma SWE shows a
higher correlation (R = 0.95 with p < .01) with in-situ SWE than the
operational gamma SWE (R = 0.75 with p = .15; Fig. 8b). The slope
and y-intercept of the updated SWE are also much closer to the 1:1 line.
While the operational gamma SWE overestimated SWE by 8 mm in
2017, it underestimated SWE by 12 mm in 2018. The updated gamma
SWE biases are consistent for both years.

A final comparison was conducted using the weekly SWE samples
from the United States Army Corps of Engineer (USACE) at three sites
(Baldhill, ND, Orwell, MN, and Traverse, MN) in the north-central U.S.
(see Fig. S4). The USACE SWE shows better agreement with the SMAP-
updated SWE (R = 0.71 with p = .075) than the operational gamma
SWE (R = 0.65 with p = .12; Fig. 9).

6. Discussion

6.1. Evaluation of soil moisture

The superior agreement of SMAP products with gamma SM in non-
forested areas could be caused by its finer spatial resolution
(9 km × 9 km) as compared to AMSR2 (25 km × 25 km) and NLDAS-2
(12.5 km × 12.5 km). Considering that the typical gamma flight line
has a 5–7 km2 footprint, the finer resolution of the SMAP enhanced SM

may lead to less spatial heterogeneity error within the pixels (Loew,
2008; Chan et al., 2018). However, Cho et al. (2018) found that the
gamma SM also had better agreement with SMAP standard SM
(36 km× 36 km; SPL3SMP) than with either the AMSR2 or the NLDAS-
2 mosaic SM products. This result is similar to Kim et al.'s (2018)
finding that in-situ SM showed better agreement with the SMAP stan-
dard SM than with either AMSR2 or Global Land Data Assimilation
System (GLDAS) SM products (25 km × 25 km). This suggests that the
L-band frequency (1.4 GHz) of the SMAP radiometer might lead to
better performance regardless of spatial resolution (Chan et al., 2018).
The greater penetration depth of the L-band could be also more re-
presentative of the ~20 cm depth of the gamma SM. In dense-forested
areas with high vegetation canopy, it is extremely difficult to obtain
accurate SM retrievals using the SMAP L-band and AMSR2 X-band
frequencies. The AMSR2 X-band SM product over the Deciduous
broadleaf forest and Mixed forest regions are typically masked with the
data quality flag. In non-forested regions with bare ground or low ve-
getation canopy, the L-band SM performs better than X-band because
the L-band frequency can partly penetrate low vegetation canopy while
the higher-frequency X-band experiences greater attenuation (Kim
et al., 2018; Jackson and Schmugge, 1991).

In the Deciduous broadleaf forest and Mixed forest classes, the op-
erational gamma SM had a poorer agreement with SMAP SM than with
NLDAS-2 SM, which agrees with previous validation studies of passive
microwave SM products, including the SMAP radiometer. A known
limitation of passive microwave soil moisture retrievals is that dense
vegetation canopy over the soil surface reduces the sensitivity of the
relationship between emissivity and SM (Jackson and Schmugge, 1991;
Wigneron et al., 2003), even though the L-band microwave frequency
yields relatively good results under vegetation covers relative to other,
higher frequencies because of its higher penetration depth (Vittucci
et al., 2016; Entekhabi et al., 2010). Due to the extremely high optical
depth of forests, there is little chance of reliably estimating SM condi-
tions. For forest types, Chan et al. (2016) found larger biases and
ubRMSD between SMAP and in-situ SM measurements at core

Fig. 5. (a) Boxplots of SMAP SM at original
(operational) and latest available dates and
original and updated gamma SM for entire
flight lines in the non-forested region from
2015 to 2017, along with (b) the corre-
sponding original and updated gamma
SWE. (a) The small circles are individual SM
data (no meaning for a spread in the hor-
izontal direction) and the larger circles are
outliers. The bold line within each colored
box is median, and the upper and bottom
sides of the box are the upper (75%) and
lower (25%) quantiles of the data. (b) The
width of the leaf-shape boxplot shows the
relative amount of the SWE data at that
magnitude.
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validation sites (CVS), relative to other land cover types.
While SMAP SM has a wet bias in forest areas, there is no bias be-

tween operational gamma SM and NLDAS-2 SM due to land cover.
Considering that NLDAS-2 Mosaic SM is estimated based on a physical
land surface model (Koster and Suarez, 1996), it is likely that gamma
SM is less affected by vegetation effects than passive microwave (SMAP
and AMSR2) SM. The airborne gamma radiation technique depends on
historical data to establish the relationship between gamma count rates
and SM and determine a standardized gamma count rate at 35%
gravimetric SM values for each calibration flight line (Carroll, 1981;
Carroll, 2001; Jones and Carroll, 1983). This suggests that the vegeta-
tion effect on airborne gamma radiation observations is minimal.
Change in vegetation conditions by season are also minor because most
gamma SM observations – to estimate antecedent SM prior to soil
freezing – are measured in late fall (e.g. October or November) (Carroll,
2001). For these reasons, the gamma SM appears to be reliable in
forested regions and has the potential to be used beyond its operational
estimates of SWE. However, further investigation is still required to
determine how gamma fluxes from the soil are attenuated by vegetation
characteristics (e.g. type, height, and density) and how much the at-
tenuation impacts SM estimates (Woods et al., 1965; Schetselaar and
Rencz, 1997; Ahl and Bieber, 2010).

Previous studies typically evaluated airborne gamma radiation SM

with ground-based SM observations. With an average of 25 samples
gravimetric SM measurements per flight line, Carroll (1981) and Jones
and Carroll (1983) found airborne gamma SM had strong agreement
(R2 = 0.87 and 0.84, RMSD = 3.2 and 3.9%, respectively). The air-
borne gamma radiation technique is considered to be a reliable method
to estimate areal mean SM measurements.

No previous studies have compared gamma SM observations to sa-
tellite-based active and passive microwave or LSM SM, even though
there are a series of satellite-based microwave sensors (e.g. SSM/I,
AMSR-E/2, ASCAT, SMOS, and SMAP) and numerous evaluation stu-
dies since the early 1980s (e.g., Al-Yaari et al., 2014; Babaeian et al.,
2019; Mladenova et al., 2014; Kim et al., 2018; Xia et al., 2014). This
may be due to the operational mission of the airborne gamma program.
As mentioned earlier, the airborne gamma radiation SM data collected
by the NOAA NWS's Airborne Gamma Radiation Snow Survey Program
is intended primarily to estimate SWE, not SM itself, and to provide the
SWE data to the RFCs for use in the snowmelt flood forecasts. In light of
the gamma radiation SM performance forests, gamma SM may help
estimate SM in forested-dominated regions; one of the current chal-
lenges in the SM remote sensing community. As an independent asset,
the airborne gamma radiation SM dataset can be utilized to evaluate
current and future SM products from various satellites and land surface
models to improve hydrological models.

6.2. Evaluation of SWE

The SMAP-updated gamma SWE agreement with satellite SWE is
better than the previous findings by Tuttle et al. (2018). Tuttle et al.
(2018) compared the operational gamma SWE to AMSR-E SWE esti-
mates over the Northern Great Plains from 2002 to 2011. Their corre-
lation coefficient (0.36) and RMSD (43 mm) is relatively poor compared
to the SMAP-updated gamma SWE results and even the operational
SWE. This may be due to different study periods between the two stu-
dies (2002–2011 versus 2015–2018). Their statistics could include a
few erroneous SWE values during 2009 and 2011 when there were
snowmelt floods. The improved agreement of the SMAP-updated SWE
with in-situ SWE, satellite microwave SWE, and GlobSnow SWE suggest
that a portion of the error in operational gamma SWE caused by
antecedent SM can be reduced using this proposed method.

Compared to the operational gamma SWE, the SMAP-updated SWE
has better agreement with the limited available datasets including in-
situ, satellite-based SSMIS, and GlobSnow assimilated SWE, but positive
biases with in-situ and SSMIS SWE (10.4% and 11.8% respectively).
Carroll and Schaake Jr (1983) also found that the airborne gamma SWE
data tend to overestimate the ground-based data by approximately
10%. This may be due to the airborne gamma radiation method de-
tecting water in all phases, including ground ice, standing water, and
superimposed SM in the soil surface (Carroll, 2001), which might not be
included in SWE observations from ground samples and snow stations.
A snow pillow measures only the mass of the overlaying snowpack
(Goodison et al., 1981) and has inherent limitations because the heat
exchange between the snow and soil is disrupted, likely causing SWE
underestimation (Bland et al., 1997). The current study suggests the
method improves gamma SWE estimates but further validation with
purposefully designed in-situ SWE measurements is needed.

6.3. Limitations

When the linear regression model between operational airborne
gamma SM and SMAP SM was developed, the residual errors (εi) for
each flight line were included in the model, assuming that the errors
reflect the physical properties of the land surface within each line
footprint (e.g. soil properties, elevation, slope, and inner spatial het-
erogeneity) (Clark et al., 2011). A residual analysis conducted with land
surface characteristics (clay percentage, saturated hydraulic con-
ductivity, and mean elevation and slope) to identify physical properties

Fig. 6. Histogram of (a) changes in SMAP SM and (b) NOAA airborne gamma
SWE from the date of the baseline fall gamma flights to the date immediately
before winter freeze-up.
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related to the errors and to assess the appropriateness of the model did
not find any statistically significant relationships. Carroll and Carroll
(1989b) found that gamma SWE is systematically underestimated when
large SWE variability occurs within a flight footprint. Because the
gamma technique principles, measuring water mass by attenuation, are
the same for SM and SWE, it possible that SM variability could cause
gamma SM to be underestimated. High-resolution soil properties and
SM-related variables (e.g. land surface temperature/Sentinel-1 SAR
backscatter) could be used to understand spatial heterogeneity impacts
and to improve the operational gamma SM methodology (Das et al.,
2019).

A well-known issue when validating gridded satellite products with
in-situ (or different platform) measurements is the difference in spatial
scales between the observations and the ability of the sub-grid scale
measurements to capture the variability within the satellite footprint
(Gruber et al., 2013; Colliander et al., 2017). Tuttle et al. (2018) noted
that SWE spatial variability affects the gamma versus satellite SWE
comparison because of the different spatial scales for the gamma

footprint and the satellite pixel. The different observation scales may
contribute to the residual errors in the linear regression model between
the gamma and SMAP SM. The gamma SM lines often comprise parts of
multiple SMAP pixels. The weighted mean SMAP SM was found for the
given flight footprint. However, the weighted mean SM is derived from
Tb observations that are partly from outside of the flight line footprint,
thus introducing representativeness errors into the linear model. Fur-
ther studies are required to identify physical characteristics that might
be related to the residual errors in the model.

There may be temporal differences between airborne gamma ra-
diation observations and the satellite and model products in this study
for SM and SWE comparisons. The gamma flight overpass times range
from 9 AM to 6 PM while the sun-synchronous SMAP, AMSR2, and
SSMIS sensors have constant local overpass times. Recognizing that SM
has diurnal changes (Jackson, 1973), the linear regression model be-
tween the operational airborne gamma and SMAP SM could be im-
proved if the measurement time of the gamma flight data were known
and the comparison included only those observations where

Fig. 7. Comparison between operational and SMAP-updated NOAA airborne gamma snow water equivalent with (a, b) satellite-based snow water equivalent from
Special Sensor Microwave Imager Sounder (SSMIS) and (c, d) ESA GlobSnow assimilation SWE within the given flight line footprint. The points are colored by day of
year (DOY).
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measurement times were similar. It is also possible that this approach
would improve if NLDAS-2 SM were used instead of SMAP SM because
hourly NLDAS-2 SM values are available (Xia et al., 2015).

The different representative depths among the SM data sources also
add error. The passive microwave sensors measure surface SM from the
top few centimeters, with a depth that varies with the amount of soil
moisture and its distribution (Njoku and Kong, 1977; Escorihuela et al.,
2010). The L-band SMAP SM captures approximately the top 5 cm of
the soil (O'Neill et al., 2018; McColl et al., 2017) whereas the X-band

AMSR2 penetration depth is close to 1 cm (Bindlish et al., 2018) be-
cause lower-frequency microwave radiation generally penetrates soil
and vegetation canopy more effectively than higher-frequency bands
(Jackson and Schmugge, 1991). However, airborne gamma SM is de-
rived from a larger depth range than the penetration depth of any
current passive microwave satellite instrument (Carroll, 2001) with
91% of the gamma flux emitted from the upper 10 cm of the soil, and
96% from the upper 20 cm (Zotimov, 1968; Jones and Carroll, 1983).
While the different sensors' representative depths are not dissimilar, the

Fig. 8. (a) Time series of in-situ SM and SWE measurements with the operational and SMAP-updated gamma SWE at the Glacial Ridge Station, Minnesota (ID: 2050)
from the Soil Climate Analysis Network (SCAN) and (b) agreement between the in-situ SWE and the operational and SMAP-updated gamma SWE. The red points in
both plots indicate the operational gamma SWE, while the green points indicate SMAP-updated gamma SWE. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 9. (a) Time series of in-situ SWE measurements with the operational and SMAP-updated gamma SWE at three sites (Baldhill, ND, Orwell, MN, and Traverse, MN)
from the United States Army Corps of Engineers (USACE) and (b) agreement between the in-situ USACE SWE and the operational and SMAP-updated gamma SWE.
The red points in both plots indicate the operational gamma SWE, while the green points indicate SMAP-updated gamma SWE. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

E. Cho, et al. Remote Sensing of Environment 240 (2020) 111668

12



modest difference in representative depths could still cause errors,
especially during dynamic wetting or drying (e.g., right after rainfall
events).

7. Conclusion

In this study, a linear regression method was developed to improve
operational airborne gamma SWE estimates in non-forested regions by
updating the fall baseline SM using the SMAP enhanced SM product.
Based on limited comparisons, the SMAP-updated SWE improves
agreement with satellite and in-situ SWE observations. This preliminary
study identified the need to further test the approach as well as op-
portunities to improve the approach using higher-resolution/evolving
independent products. For example, the Copernicus Sentinel-1
Synthetic Aperture Radar (SAR) provides 1-km C-band backscatter
data. Because the SAR backscatter is directly related to surface SM
condition, the Sentinel-1 SAR-based information could improve ante-
cedent SM estimates over the gamma flight lines. However, current
satellite SM observations offer little value for improving the gamma
estimates in forested areas. In densely vegetated regions SM from LSMs,
applied using this study's approach, could improve the operational
gamma SWE regardless of land cover type. In the United States,
snowmelt flood predictions are challenged by limited ground observa-
tions and rely heavily on the airborne gamma SWE product which is
also used to support the operational SNODAS product. This study shows
that the typical SWE corrections are on the order of 10 mm. Thus, the
soil moisture corrections would be most important for regions having
shallow snowpacks and snowmelt-driven flooding that is highly sensi-
tive to modest SWE differences. Finally, gamma SWE estimates also
serve as independent SWE measurements that are useful for evaluating
satellite and modeled SWE products. An updated airborne gamma SWE
with reduced errors will better support the evaluation of SWE products
from current and future satellite missions and regional/global land
surface or climate models.
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