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Abstract Observation‐based long‐term gridded snow water equivalent (SWE) products are important
assets for hydrological and climate research. However, an evaluation of the currently available SWE
products has been limited due to the lack of independent SWE data that extend over a large range of
environmental conditions. In this study, three daily long‐term SWE products (Special Sensor Microwave
Imager and Sounder [SSMI/S] SWE, GlobSnow‐2 SWE, and University of Arizona [UA] SWE) were
evaluated by seasonal snow cover and land cover classifications over the conterminous United States from
1982 to 2017, using the historical airborne gamma radiation SWE observations (20,738 measurements).
We found that there are similar patterns in SSMI/S and GlobSnow‐2 SWE when compared against the
gamma SWE. However, GlobSnow‐2 SWE had better agreement with gamma SWE than SSMI/S SWE in
some forested‐type classes and maritime and prairie snow classes. As compared to SSMI/S and GlobSnow‐2
SWE, UA SWE has much better agreement with gamma SWE in all land cover types and snow classes. Tree
cover and topographic heterogeneity affect the agreement between the gamma and gridded SWE and
accuracy of gamma SWE itself with the largest differences typically occurring when the percent tree cover
was 80% or higher, the terrain slope was steeper than 2.5°, and the elevation range exceeded 100 m. The
results demonstrate the reliability of the UA SWE products and the benefits of the gamma radiation
approach to measure SWE, especially in forested regions.

Plain Language Summary Long‐term gridded snowpack data are essential for effective water
resource management and flood risk assessments under a changing climate in the United States.
However, the currently available snowpack data have large uncertainties, and the evaluations have been
limited due to the lack of reliable independent data sets. Here, we evaluate three daily long‐term (>30 years)
snow water equivalent (SWE) products—empirically based SWE from passive microwave, GlobSnow‐2
SWE, and University of Arizona SWE from 1982 to 2017 over the conterminous United States—using the
historical airborne gamma SWE observations collected by the National Oceanic and Atmospheric
Administration. Two key findings are that (1) the UA SWE product is the most reliable and (2) the long‐term
airborne SWE record is of great value, especially in forested regions.

1. Introduction

Snow impacts human activity across the United States as a source of water, hydropower, and potentially
flooding. In the western United States, snow supplies 70% of the annual water supply valued at more than
$348 billion per year (Adams et al., 2004). In the north‐central and northeastern United States, snow melt-
water is a dominant driver of severe spring flooding (Wazney & Clark, 2015; Stadnyk et al., 2016; https://
www.weather.gov/dvn/summary_SpringFlooding_2019). Accurate, timely estimates of the snowpack are
required over the United States to help monitor and manage seasonal snow and melt. The most hydrologi-
cally relevant measure of the snowpack is snow water equivalent (SWE), which describes the amount of
water stored in the snow.

In addition to real‐time snow observations, a long‐term record of SWE is important for identifying climate
variability and trends and for developing a climatology of the snowpack. As changes in seasonal snow
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have recently accelerated across the United States in the last few decades (Ashfaq et al., 2013; Georgakakos
et al., 2014), reliable long‐term SWE measurements are further needed for effective water management and
flood risk assessments (Zeng et al., 2018). Point‐based long‐term SWE records from snow station networks
(e.g., NRCS Snowpack Telemetry [SNOTEL]) have provided high‐quality measurements. The time series
of SWE observations have been used to evaluate and validate trends and seasonal variabilities in snowpack
in numerous previous studies in the western United States (Cooper et al., 2016; Mote et al., 2018; Pierce et al.,
2008). However, point measurements do not necessarily represent the snowpack distribution especially in
areas with spatially heterogeneous terrain (Molotch & Bales, 2005). In order to overcome the limitations,
observation‐based gridded SWE products have been developed using satellite remote sensing and/or in situ
snow station networks with assimilation techniques.

A series of passive microwave satellite sensors have provided a potential source of spatially distributed SWE
information. For more than 30 years, the Special Sensor Microwave Imager (SSM/I) and SSM
Imager/Sounder (SSMIS) aboard the Defense Meteorological Satellite Program (DMSP) series of satellites
(1987—current) have provided long‐term SWE information at a global scale (Derksen et al., 2005; Foster
et al., 2005; Tait, 1998). Passive microwave SWE retrieval algorithms typically use empirical relationships
between SWE and snow depth and the difference between the brightness temperatures at two different pas-
sive microwave frequencies: a low frequency, 18–19 GHz, and a higher frequency, typically around 37 GHz.
However, known sources of error hamper the operational use in many regions over the United States.
Carroll et al. (1999) mentionedmajor difficulties that tend to be inherent in the satellite‐based passive micro-
wave SWE products. First, the passive microwavse algorithms tend not to work under a deep snowpack
(greater than approximately 200‐mm SWE), which is called “saturation effect” because the higher frequency
microwave signal is no longer detectable (Dong et al., 2005; Vuyovich et al., 2017). Second, the general ten-
dency is for algorithms to not estimate SWE sufficiently well in forested or heavily vegetated regions (Foster
et al., 2005; Vander Jagt et al., 2013). Third, even in flat areas with sparse vegetation, the passive microwave
signal is highly sensitive to even small amounts of liquid water in the snowpack (Kang et al., 2014; Walker &
Goodison, 1993). Consequently, the SWE values are unreliable under wet snow conditions.

To directly assimilate satellite‐based passive microwave emission, Pulliainen (2006) developed a Bayesian‐
based assimilation technique that weighs the passive microwave satellite data and the interpolated
ground‐based snow depth observations using a semi‐empirical radiative transfer model. This assimilation
technique was integrated into the GlobSnow project supported by the European Space Agency to produce
a long‐term SWE data set for the Northern Hemisphere (Takala et al., 2011). Because ground‐based snow
depth was used to generate interpolated effective grain size data and simulate Tb and SWE, the accuracy
of the SWE is expected to be better than those of typical stand‐alone channel differencing algorithms from
passive microwave satellite sensors (e.g., Chang et al., 1987; Kelly, 2009). In fact, previous studies found that
the GlobSnow SWE has better performance with point ground SWE measurements as compared to the
empirical SWE algorithms (Hancock et al., 2013; Larue et al., 2017; Mudryk et al., 2015). However, the
GlobSnow‐2 SWE still has large uncertainties with root‐mean‐square error (RMSE) of 94 mm (36%) in wet
and deep snow conditions and forested regions, probably due to the inherent sources of error in passive
microwave signal (Larue et al., 2017). Hancock et al. (2013) using GlobSnow V1.0 also reported that occa-
sional abrupt changes were found in the product.

The University of Arizona (UA) recently developed a 4‐km gridded long‐term SWE data set from 1982 to
2017 (hereafter UA SWE) over the conterminous United States (Broxton et al., 2016) by combining high‐
quality point SWE measurements with finer spatial resolution gridded precipitation and temperature data
sets. The observation‐based UA SWE product is produced by interpolating thousands of ground‐based mea-
surements of SWE and snow depth from SNOTEL (Serreze et al., 1999) and the NWS Cooperative Observer
Program (COOP) network sites and 4‐km gridded PRISM precipitation and temperature data (Daly et al.,
2008). The quality and reliability of the UA SWE data have been demonstrated compared to reanalysis
and land assimilation products (Broxton et al., 2016) and independent observation‐based products
(Dawson et al., 2018). Dawson et al. (2018) reported that the passive microwave AMSR‐E SWE product
and two satellite‐merged SWE products (GlobSnow‐2 and Canadian Sea Ice and Snow Evolution
Network) have large differences from the UA SWE data (mean absolute difference [MAD]: 46% to 59%),
especially in forested regions. They also found that there was a good agreement in basin‐averaged SWE
between UA and Airborne Snow Observatory (ASO) products (32 flight measurements) (Painter et al.,
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2016) in the upper Tuolumne basin, California's Sierra Nevada (correlation: 0.98 and MAD: 51.5 mm [30%]).
However, since the test with ASO SWE had a limited number of flights over a sparsely forested region (<30%
of tree cover fraction; Dawson et al., 2018), there is still a need to further evaluate the accuracy of the UA
SWE over more heavily vegetated regions.

Due to the lack of reliable independent SWE records, an evaluation of the currently available long‐term SWE
products at a continental scale has been limited. The airborne gamma snow survey operated by the National
Oceanic and Atmospheric Administration's (NOAA) National Operational Hydrologic Remote Sensing
Center (NOHRSC) has substantial potential to evaluate the gridded SWE products over the conterminous
United States. The NOAA airborne gamma snow survey was designed to help hydrologists and flood forecas-
ters in the National Weather Service offices, regional river forecasting centers, and other U.S. and Canadian
federal agencies improve operational spring flood predictions and water supply outlooks (Peck et al., 1980).
Since 1979, the snow survey has collected areal mean SWE data over a network of 2,400 flight lines covering
25 states and seven Canadian provinces (Carroll, 2001). The airborne gamma technique uses the attenuation
of the gamma‐ray signal by water in the snowpack (any phase) to measure SWE for each flight line. The
mean areal gamma SWE value is based on the difference between gamma radiation measurements over bare
ground and snow‐covered ground.

The accuracy of airborne gamma SWE estimates has been evaluated using numerous ground‐based snow
observations from snow courses and field campaigns on designated flight lines (Carroll & Schaake, 1983;
Carroll & Vose, 1984; Glynn et al., 1988; Goodison et al., 1984; Peck et al., 1971). In prairie regions, with
mean ground‐based SWE between 20 and 150 mm, the RMSE of airborne gamma SWE is less than 10
mm (4–10%) based on a few hundred samples within the flight lines (Carroll & Schaake, 1983). In densely
forested regions, Carroll and Vose (1984) found that the airborne gamma SWE had a low bias and an
RMSE of 23 mm as compared to the mean ground‐based SWE. In that study of the Lake Superior and
Saint John basins in the United States, SWE measurements ranged from 20 to 480 mm based on approxi-
mately 200 snow depth measurements and 20 snow density measurements distributed along the length of
each flight line (total 72 lines). These studies provided the impetus to develop an airborne gamma SWE pro-
gram, which has been successfully used for operational flood forecasting during the last 40 years (Carroll,
2001). Currently, the airborne gamma SWE observations, as well as ground‐based and satellite snow covered
area observations over the United States, support the NOHRSC near‐real‐time, high spatial resolution (1
km2 gridded) Snow Data Assimilation System products (Barrett, 2003).

An evaluation of the currently available long‐term SWE products is important to differentiate among
environments having a strong agreement or large differences among products. The 40‐year airborne
gamma SWE record is ideal to evaluate the gridded observation‐based SWE products according to seaso-
nal snow and land cover characteristics. Even though the gamma SWE record has limited spatial and
temporal coverages compared to the coarser satellite and assimilation products, the record provides accu-
rate and reliable SWE in a wide range of snow and land characteristics, especially in forested regions
where SWE estimation remains challenging (Cho et al., 2018). The wide range encompasses a broader
sample of snow conditions over a longer time period than is collected using any other aerial observations
(e.g., airborne lidar) and provides spatially integrated observations over a footprint closer to satellite reso-
lution than point observations.

This study focuses on providing a comprehensive examination of three currently available observation‐based
gridded SWE data sets, spaceborne passive microwave SSM/I‐SSMIS (hereafter SSMI/S) SWE, GlobSnow‐2
SWE, and UA SWE, using the airborne gamma SWE record from 1982 to 2017 over the conterminous United
States. We hypothesize that SSMI/S, using a standard Chang‐type microwave retrieval algorithm, and
GlobSnow‐2 products will show similar patterns as compared to the airborne gamma SWE estimates, that
is, good agreement in regions with little vegetation and relatively homogeneous terrain (e.g., cropland and
grassland land cover types and “prairie” of seasonal snow class) and lower agreement in regions with dense
vegetation and heterogeneous terrain (e.g., forested‐type land cover types and “warm forest” and “maritime”
of seasonal snow classes). We also hypothesize that UA SWE will compare favorably to the gamma SWE
even in forested or heavily vegetated regions due to the lower impact of forest fraction on both products
(Cho et al., 2018; Dawson et al., 2018). Finally, we hypothesize that known gamma weaknesses under het-
erogeneous conditions will be revealed as larger differences between gamma SWE and the gridded
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products. We evaluate the three long‐term daily SWE estimates against the historical airborne gamma SWE
record by land cover type, seasonal snow cover classification, and the degree of the tree fraction and land
heterogeneity across the United States.

This paper is organized as follows. Section 2 describes the study area with land cover types, seasonal snow
classes, and tree fractions for a categorized evaluation and sensitivity test of the SWE products. Section 3
describes the three gridded SWE data sets and airborne gamma SWE. The methodologies, which include a
resampling method and the calculation of agreement statistics, are described in section 4. Section 5 details
the results of spatial comparison of three products (section 5.1), their differences by seasonal snow and land
cover classes (section 5.2), and the effect of tree fraction and topographical characteristics (section 5.3).
Section 6 offers discussions about the similarities, differences, and new findings in our results with respect
to previous studies and potential limitations of gamma SWE estimates. Conclusion and future perspectives
are drawn in section 7.

2. Study Area

The study area comprises the conterminous United States where all SWE data used in this study are avail-
able (Figure 1), including parts of eight NOAA river forecasting centers (RFCs): North‐Central (NC),
Missouri Basin (MB), Ohio (OH), North‐East (NE), Mid‐Atlantic (MA), Colorado Basin RFC (CB),
Northwest (NW), and California Nevada (CN). The RFC boundaries were designated by the NOAA NWS
Advanced Hydrological Prediction Service to manage regional river flow and support flood forecasting over
the United States. The airborne gamma radiation survey provides fall soil moisture and winter SWE mea-
surements to each regional RFC. The NOAA NOHRSC gamma radiation survey network is composed of
over 2,400 flight lines over the United States including Alaska and southern Canada. Among them, 1,812
gamma flight lines over the conterminous United States were used in this study. The study region is domi-
nated by seven types of the International Geosphere‐Biosphere Programme (IGBP) land cover type: ever-
green needleleaf forest, deciduous broadleaf forest, mixed forest, croplands, cropland/natural vegetation
mosaic, grasslands, and woody savannas (Channan et al., 2014; Figure 1a). The study area is also classified
by six seasonal snow classes: tundra, taiga, maritime, ephemeral, prairie, and warm forest by the Sturm et al.
(2010) seasonal snow cover classification (Figure 1b). Due to a very limited number of gamma SWE observa-
tions, the woody savannas land cover type and the ephemeral snow classes were excluded in this study. The
annual vegetation continuous field (VCF) from the NASA Making Earth System Data Records for Use in
Research Environments (MEaSUREs) was used to estimate fractional tree cover at each gamma line
(Hansen & Song, 2018; Figure 1c).

3. Data
3.1. Airborne Gamma Radiation SWE

The airborne SWE estimates are obtained using a gamma radiation detector onboard a low‐flying aircraft (at
an altitude of 150 m above the ground). This instrument measures the natural terrestrial gamma radiation
emitted from trace elements of 40K, 238U, and 232Th radioisotopes in the upper 20 cm of soil. In the airborne
gamma technique, the attenuation of the gamma‐ray signal by water mass in the snowpack (any phase) over
a flight line is used to estimate SWE directly. The airborne gamma SWE value is estimated using the differ-
ence between the rates of gamma radiation particles over bare ground (attenuation by soil moisture only)
and snow‐covered ground (attenuation by soil moisture and snowpack).

The operational gamma SWE data are calculated using the following equations:

SWE 40K
� � ¼ 25 :4

A
· ln

40Kb
40Ks

� �
−ln

100þ 1 :11·SM 40Ks
� �

100þ 111·SM 40Kb
� �

" #" #
(1)

SWE 208TI
� � ¼ 1

A
· ln

208Tlb
208Tls

� �
−ln

100þ 1 :11·SM 208Tls
� �

100þ 111·SM 208Tlb
� �

" #" #
(2)

SWE GCð Þ ¼ 1
A
· ln

GCb

GCs

� �
−ln

100þ 1 :11·SM GCs½ �
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GammaSWE ¼ 0 :346·SWE 40KÞ þ 0 :518·SWE 208Tl
� �þ 0 :136·SWE GCð Þ�

(4)

where 40K, 208Tl, and the total count windows (GC) are uncollided gamma count rates over bare ground
(40Kb,

208Tlb, and GCb) and snow‐covered ground (40Ks,
208Tls, and GCs). SM(40Kb), SM(208Tlb), and

SM(GCb) are gravimetric soil moisture contents over bare ground, and SM(40Ks), SM(208Tls), and SM(GCs)
are gravimetric soil moisture contents over snow‐cover ground detected by 40K, 208Tl, and the total count
windows (GC), respectively. A is a radiation attenuation coefficient in water, 0.1482. GammaSWE is a single
average gamma radiation SWE (mm) value for the entire flight line reported via the NOHRSC website
(http://www.nohrsc.noaa.gov/snowsurvey/).

Since 1979, the operational NWS gamma radiation snow survey has provided about 27,000 gamma SWE
measurements over the entire U.S. and southern Canadian provinces via the NOHRSC website (http://
www.nohrsc.noaa.gov/snowsurvey/). A typical flight line covers approximately 5 km2 with a swath 300 m
wide and 16 km long. The gamma SWE observations are areal‐average values for each flight line footprint.
In this study, 20,738 airborne gamma SWE observations covering 1,812 flight lines flown from January 1982
to May 2017 within the conterminous United States are used (Table 1). Flight lines in which the majority
type/class does not exceed 50% of the gamma footprint were considered “unclassified” and were excluded
from each analysis by the land cover type and snow classification.

Figure 1. (a) IGBP land cover type, (b) the Sturm et al. seasonal snow classification, and (c) Vegetation Continuous Field
maps of the study area over the conterminous United States with NOAA gamma flight lines (N = 1,812).
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3.2. Spaceborne Passive Microwave SSM/I and SSMIS SWE

The series of SSM/I and SSMIS sensors aboard the DMSP series of satellites operated by the U.S. Department
of Defense provides daily brightness temperatures at approximately 6 a.m. (descending)/p.m. (ascending)
local time with global coverage from July 1987 to the present. The microwave frequencies at 19, 22, 37
(SSM/I and SSMIS), 85 (SSM/I only), and 91 GHz (SSMIS only) are sampled in both horizontal and vertical
polarizations, except the 22 GHz (vertical only). In this study, SSMI/S SWE was estimated using a Chang‐
type algorithm (Chang et al., 1987) with original coefficients for F8–F13 (Armstrong & Brodzik, 2001) and
modified coefficients for F17 developed by Brodzik (2014) as follows:

SWESSM=I ¼ 4 :77· TbH;19GHz−TbH;37GHz−5
� �

for F8;F11; and F13 SSM=I (5)

SWESSMIS ¼ a·TbH;19GHz−b·TbH;37GHz−c for F17 SSMIS (6)

where a, b, and c are given as 4.807 mm/K, 4.792 mm/K, and 6.036 mm, respectively. TbH,19GHz and
TbH,37GHz are brightness temperatures at 19‐ and 37‐GHz horizontal polarization, respectively. F8, F11,
F13, and F17 are the DMSP platform ID. The Tb at the descending overpass (6 a.m.) was used to minimize
error by wet snow (Derksen et al., 2000). The DMSP SSM/I‐SSMIS Pathfinder Daily EASE‐Grid Brightness
Temperatures (Version 2) from July 1987 to May 2017 was used in this study and freely available at the
National Snow and Ice Data Center (NSIDC) website (https://nsidc.org/data/NSIDC‐0032; Armstrong
et al., 1994).

3.3. GlobSnow‐2 SWE

The GlobSnow project, funded by the European Space Agency, provides gridded daily SWE maps with 25‐
km spatial resolution from 1979 to 2016 (GlobSnow‐2, archive_v2.0) for the Northern Hemisphere, except
for glaciers and mountainous regions. The GlobSnow SWE utilizes an observation‐based data assimilation
approach combining ground‐based synoptic snow depth station data with passive microwave satellite mea-
surements (Takala et al., 2011). Ground‐based point measurements of snow depth are taken from the
European Centre forMedium‐RangeWeather ForecastsWMOweather stations. The final product uses daily
Tb at 19 and 37 GHz in vertical polarization from the series of passive microwave radiometers (SMMR 1979–
1987, SSM/I 1987–2009, and SSMIS 2010–2014) (GlobSnow‐2 Final Report; Luojus et al., 2014).

The basis of the GlobSnow SWE processing system is presented by Pulliainen (2006) and Takala et al. (2011),
though a brief description of the processes for SWE retrievals is given here. Snow depth maps are produced
using ordinary kriging interpolation technique for synoptic weather station snow depth observations. The
gridded snow depth is used as input to simulated Tb using the HUT snow emission model. The model
describes Tb as a function of a single‐layer snowpack (depth, snow density, and effective grain size) and for-
est canopy. The model is fit to satellite‐observed Tb values by optimizing effective snow grain sizes with con-
stant snow density (0.24 kg/m2) at the locations where the weather station snow depth values are available.
A map of spatially continuous effective snow grain size is developed by the weather station–based snow

Table 1
Overview of the Number of the NOAA Airborne Gamma Radiation Flight Lines and SWE Observations by Land Cover Types and Snow Classes

Land cover types
Flight
lines Total

1982–
1989

1990–
1999

2000–
2009

2010–
2017

Snow
cover type

Flight
lines Total

1982–
1989

1990–
1999

2000–
2009

2010–
2017

Evergreen needleleaf
forest

192 1,735 283 716 549 187 Tundra 99 1,346 94 631 523 98

Deciduous broadleaf
forest

165 2,609 143 516 1,290 660 Taiga 72 925 62 392 391 80

Mixed forest 220 3,961 470 894 1,342 1,255 Maritime 391 5,487 485 1,299 2,365 1,338
Grasslands 368 2,640 267 1,002 1,122 249 Prairie 1,079 10,704 2,486 3,302 2,222 2,694
Croplands 610 7,140 1,931 2,174 1,038 1,997 Warm forest 69 644 159 156 157 172
Cropland/natural
vegetation

245 2,582 407 873 823 479 Ephemeral 3 5 1 4 0 0

Woody savannas 12 71 48 21 0 2 Unclassified 99 1,627 262 412 506 447
Total 1,812 20,738 3,549 6,169 6,164 4,829 Total 1,812 20,738 3,549 6,169 6,164 4,829

Note. The gamma SWE values in the woody savannas, ephemeral, and unclassified are excluded in this study.
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grain size estimates using a kriging interpolation technique. The snow depth and effective snow grain size
maps are used to initiate the HUTmodel as inputs and generate gridded Tb simulations. The Tb simulations
are then assimilated with satellite Tb observations by using adaptive weights on the satellite‐observed Tb
according to their variances. A final SWE is estimated using the assimilated Tb with the maps of the effective
grain size and land cover information (Takala et al., 2011).

Compared to the previous V1.0 and V1.3 SWE products, there are enhancements to the GlobSnow‐2 SWE
(archive_v2.0) product including the improved quantification of data uncertainty characteristics, homogeni-
zation of the multiple‐year snow depth measurements from synoptic weather stations, and re‐processing of
the long‐term SWE data sets. While the retrieval accuracy of the GlobSnow‐2 SWE has remained the same
for most regions, it showed slight improvements for northern boreal forest and tundra regions in Canadian
reference data (Pulliainen et al., 2014). It should be noted that the inter‐sensor systematic bias is not cor-
rected in this product (Takala et al., 2011) whereas previous studies have shown inter‐sensor biases in the
Tb of the SMMR, SSM/I, and SSMI/S sensors (Derksen & Walker, 2003; Royer & Poirier, 2010; André
et al., 2015; Cho et al., 2017). In this study, the daily GlobSnow‐2 SWE was used from January 1982 to
December 2016, which was obtained from http://www.globsnow.info/swe/archive_v2.0/.

3.4. UA SWE

The UA SWE is an observation‐based 4‐km gridded SWE data set recently developed by combining the
SNOTEL SWE and NWS COOP snow depth measurements with the gridded PRISM precipitation and tem-
perature data over the conterminous United States (Zeng et al., 2018). A new interpolation technique was
used to produce the gridded SWE data set based on the ratio of observed SWE over net accumulated snowfall
(accumulated snowfall minus cumulative snow ablation), rather than SWE itself (Broxton, Dawson, & Zeng,
2016). For this, daily precipitation data were divided into daily snowfall versus rainfall using a daily air tem-
perature (2 m) threshold, and then, accumulated snow was calculated as the sum of the daily snowfalls.
Daily cumulative snow ablation at each station (or grid cell) is taken from a relationship between the
SNOTEL‐based cumulative snow ablation and cumulative degree days above 0 °C established by the entire
SNOTEL network (figure 2b in Broxton, Dawson, & Zeng, 2016). The UA SWE product also uses a newly
developed snow density parameterization, which was called “SNODEN” (Dawson et al., 2017). This parame-
terization attempts to include physical processes (e.g., temperature‐based aging, overburden snowpack, and
liquid water from snowmelt) based on the SNOTEL SWE and air temperature at 2 m by seasonal snow cover
classes. The parameterization was used to convert COOP snow depth data into SWE estimates and compute
gridded snow depth from the gridded SWE data. In this study, the daily UA SWE is used from January 1982
to December 2017. The product is available from the NASA NSIDC website (https://nsidc.org/data/nsidc‐
0719).

3.5. Land Cover Type, Snow Classification, Tree Cover Fraction, and Topographic Heterogeneity

In this study, the IGBP land cover type, the Sturm et al. snow classification, and the VCF data were used to
evaluate the long‐term SWE estimates with the airborne gamma SWE considering land cover and snow
characteristics as well as the tree cover fraction across the United States. The Terra and Aqua combined
Moderate Resolution Imaging Spectroradiometer (MODIS) land cover data (MCD12Q1; Version 6) provides
global land cover types at yearly intervals. Among the six different classification schemes in the MCD12Q1
data, the IGBP land cover classification (Type 1) provides 17 classes to meet the needs of the IGBP core
science projects (Channan et al., 2014; Loveland & Belward, 1997). The criteria were used for dividing the
classes (e.g., leaf longevity [evergreen vs. deciduous] and leaf type [broad vs. needle]). The Sturm et al.
(1995, 2010) seasonal snow cover classification is defined by a unique ensemble of stratigraphic and textural
characteristics of snow covers. The snow classification is primarily grouped by the effects of climate (tem-
perature, precipitation, and wind) on the snow cover properties (e.g., snow textures, layers, and
lateral variability).

The annual NASA MEaSUREs VCF product (VCF5KYR, Version 1) provides global fractional vegetation
cover including three layers (percent tree cover, percent non‐tree vegetation, and percent bare ground) at
0.05° spatial grid from 1982 to 2016 (Hansen & Song, 2018). In this study, the percent tree cover is used to
conduct a sensitivity analysis of tree cover on the gridded SWE products. Because the fractional tree cover
could have changed during the last 40 years, the annual VCF value was obtained for each gamma SWE
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year. The elevation data (0.0083° grid) used in this analysis were aggregated from the Shuttle Radar
Topography Mission 90‐m resolution elevation data. The slope and elevation range maps (0.0083° grid;
approximately 1 × 1‐km grid) were obtained using the “terrain” function in the “raster” R package, which
is computed using the elevation data according to Wilson et al. (2007). The elevation range value is
defined as the difference between the maximum and the minimum aggregated elevation value of a cell
and its eight surrounding cells. Three topographic values (slope, elevation range, and elevation) are
computed for each gamma footprint by areal‐weighted average.

4. Methodology

The gamma SWE observations were compared to the three gridded 4‐ or 25‐km SWE products. The original
4‐km UA SWE product was used without upscaling to 25‐km grid. The gamma flight lines frequently over-
lapped more than one SWE pixel. The areal‐weighted average SWE within the effective footprint of each
gamma flight line was calculated. For each flight line, an effective polygonal measurement footprint was
determined using a buffer function “gBuffer” in the “rgeos” R package around the given flight line, with a
fixed diameter of 330 m (Carroll, 2001; Tuttle et al., 2018). On any day when gamma SWE measurements
were collected, the gridded SWE data on the same day within the given gamma line footprint were

Figure 2. Correlation (R value) maps of daily SSMI/S, GlobSnow‐2, and UA snow water equivalent with daily NOAA air-
borne gamma radiation snow water equivalent for each gamma flight line from 1982 to 2017 (black color represents that
the R value is a negative value).
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averaged by weighing according to the portion of the footprint contained within each SWE pixel. If the
gridded SWE data were not available for a portion of the flight line footprint, the weighted SWE value
was calculated using the area of the footprint with available data. However, gamma flight lines with gridded
SWE data covering less than 50% of the area of flight footprint were excluded from the analysis. For further
details, refer to figure 2 in Tuttle et al. (2018). The same method was applied to the tree cover fraction and
three topographic characteristic data sets (slope, elevation range, and elevation). The seasonal snow cover
and land cover classes for each line were selected using the “majority” function, instead of areal‐weighted
mean values. The classes covering more than 50% of the footprint area were used to classify the footprints
in this analysis.

For evaluation, the agreements of the three gridded SWE products with airborne gamma radiation SWE
were quantified by Pearson's linear correlation coefficient (R), mean absolute difference (MAD), the propor-

tion of MAD to the mean gamma SWE (SWEgam ), MAD%, and the root‐mean‐square difference (RMSD) as
follows:

R ¼ cov SWEgrid; SWEgam
� �

std SWEgrid
� �

·std SWEgam
� � (7)

MAD ¼ 1
n
∑
n

t¼1
SWEgrid;i−SWEgam;i

�� �� (8)

MAD% ¼
1
n∑

n
t¼1 SWEgrid;i−SWEgam;i

�� ��� �
SWEgam

×100 (9)

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

t¼1
SWEgrid;i−SWEgam;i
� �2s

(10)

SWEgrid and SWEgam refer to one of the three gridded SWE and the airborne gamma SWE values, respec-
tively. cov(•) and std(•) refer to the covariance and standard deviation values of the given
product, respectively.

5. Results
5.1. Comparison of Three SWE Products With Airborne Gamma SWE

Agreement statistics (R value and MAD, %) were calculated for each gamma flight line having six or more
pairs of SWE values (Figures 2 and 3). For an example flight line, WY122, in Wyoming, the 32 pairs of his-
torical gamma SWE and corresponding UA SWE have an R value = 0.88 (see supporting information Figure
S3). SSMI/S and gamma SWE generally have a poor correlation with some regional differences (Figure 2a).
In the north‐central United States, the agreement is better than other regions (e.g., mean correlation and
MAD of North Dakota are 0.52 and 38%, respectively). However, there are poorer agreements over northern
Michigan and northeastern United States. In the western United States, the correlation is also extremely low,
particularly in Colorado. The MAD spatial patterns are more readily seen (Figure 3a). MAD values exceed
75% near Lake Michigan and from Pennsylvania to Maine and are extremely high in the western
United States.

The GlobSnow‐2 generally agrees better with the gamma SWE than the SSMI/S result in westernMinnesota,
Iowa, Wisconsin, Michigan, and the northeastern United States where there are densely forested areas
(Figures 2b and 3b). However, in some regions, the agreement between GlobSnow‐2 SWE and gamma
SWE is weaker than that of SSMI/S SWE. For example, the GlobSnow‐2 SWE has lower R values (mean:
0.36) and higher MADs (mean: 43%) than SSMI/S SWE in North Dakota. While there are a limited number
of comparisons in the western United States, because GlobSnow‐2 SWE is masked in mountainous areas
(Takala et al., 2011), there is no marked difference between GlobSnow‐2 and SSMI/S.

UA SWE strongly agrees with gamma SWE across all regions (Figures 2c and 3c). In the north‐central United
States, there are very high correlation coefficients (mean: 0.78) with small MADs (24mm, 31%). In the north-
eastern United States, UA SWE (mean R value: 0.71 and MAD: 35 mm, 44%) also has better agreement with
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gamma SWE than the SSMI/S and GlobSnow‐2 SWE (mean R value: 0.23 and 0.65 and MAD: 93 mm, 83%
and 54 mm, 65%, respectively). While the two satellite‐based SWE products had very poor agreement with
gamma SWE in the western United States, the UA SWE agrees better, particularly in the Rocky Mountain
regions including Wyoming, Arizona, Colorado, and Utah (mean R value: 0.07, 0.29, and 0.70 and MAD:
127, 121, and 71 mm [80%, 78%, and 59%] for SSMI/S, GlobSnow‐2, and UA SWE, respectively).

5.2. Differences in SWE Agreements by Seasonal Snow Classification and Land Cover Types

The historical gamma SWEwas compared to the three SWE products by the Sturm seasonal snow cover clas-
sification (Figure 4). The SSMI/S SWE extensively underestimates gamma SWE for all values of SWE.
Because the SSMI/S SWE upper bound is about 172, 131, 84, 184, and 102 mm in tundra, taiga, maritime,
prairie, and warm forest, respectively, none of the larger gamma values are captured. The best agreement
between SSMI/S and gamma SWE is for the prairie region.

Compared to the SSMI/S SWE, GlobSnow‐2 SWE has better agreement with gamma SWE, especially in the
maritime, prairie, and warm forest (Table 2). Correlations of the GlobSnow‐2 SWE for the three classes are
0.55, 0.35, and 0.19, which are better than those of SSMI/S SWE (0.12, 0.19, and 0.15, respectively). However,
GlobSnow‐2 SWE is also unable to capture high SWE values (>250 mm) in the three classes. In tundra and

Figure 3. Mean absolute difference (MAD) maps of daily SSMI/S, GlobSnow‐2, and UA snow water equivalent with daily
NOAA airborne gamma radiation snow water equivalent for each gamma flight line from 1982 to 2017 (black color
represents that the MAD [%] values are larger than 100%).

10.1029/2019WR025813Water Resources Research

CHO ET AL. 10 of 23



taiga, there are even larger errors (MAD: 211 and 167 mm) with gamma SWE similar to those of SSMI/S
SWE (MAD: 193 and 153 mm).

UA SWE has notably stronger agreement with gamma SWEwith small biases for all snow classes. The slopes
are closer to 1:1 line (0.70 to 0.93), R values are high (0.60 to 0.75), andMAD values are moderate (119 and 73
mm) in tundra and taiga classes. The UA product tends to overestimate SWE in some cases, even though the
overestimations are generally small compared to the underestimations for the other products. There are high
biases in most regions with a notable number of outliers above the 1:1 line. In tundra, UA SWE has hetero-
scedastic errors where the differences between UA and gamma SWE gradually increase with increasing
gamma SWE.

Figure 5 summarizes the spatial statistics from Figures 2 and 3 by the five seasonal snow cover classes. For
SSMI/S SWE, there is a moderate overall agreement in prairie only (median R: 0.44 and MAD: 45%) with
maritime and warm forest classes having moderate correlations but very high MAD values (85%). Tundra
and taiga classes have no correlations and very high MADs. GlobSnow‐2 has much better correlations and
smaller MADs in the maritime and warm forest as compared to SSMI/S. However, in tundra and taiga,
the GlobSnow‐2 MADs are still extremely high (median: 78% and 82% for the two classes), while their cor-
relations (median: 0.24 and 0.19) are slightly better than that of SSMI/S SWE. The UA SWE has strong cor-
relations for all snow classes, ranging from 0.68 (median value) in tundra regions to 0.82 at the warm forest,
and small MADs from 31% in tundra regions to 43% at the warm forest. As compared to SSMI/S and
GlobSnow‐2 products, the UA SWE and gamma SWE agreement is quite strong in tundra and taiga even
though there are greater ranges of MAD values.

Because SWE products performance can be affected by land surface characteristics (e.g., vegetation types
and homogeneity/heterogeneity), the above comparison was repeated based on land cover types:

Figure 4. Comparison of daily SSMI/S (top), GlobSnow‐2 (middle), and UA (bottom) snow water equivalent with daily NOAA airborne gamma radiation snow
water equivalent observations from 1982 to 2017 by the Sturm et al. seasonal snow classification.
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evergreen needleleaf forest, deciduous broadleaf forest, mixed forest, grasslands, croplands, and
cropland/natural vegetations (Figure 6; Table 3). Overall, there is similarly poor performance for the
SSMI/S and GlobSnow‐2 SWE products, and UA SWE has very strong agreement with gamma SWE for

Table 2
Agreement Between Daily SSMI/S, GlobSnow‐2 (Glob‐2), and UA SWE and Airborne Gamma SWE by the Sturm et al. Snow Cover Classification

Snow
class

Gamma mean
SWE (mm)

Mean (mm) R value MAD (mm) RMSD (mm) N

SSMI/S Glob‐2 UA SSMI/S Glob‐2 UA SSMI/S Glob‐2 UA SSMI/S Glob‐2 UA SSMI/S Glob‐2 UA

Tundra 226 37 17 307 −0.08 0.002 0.60 193 211 119 242 256 187 1,286 1,322 1,346
Taiga 183 29 19 233 0.12 0.24 0.75 153 167 73 187 196 100 871 903 925
Maritime 105 8.1 45 114 0.12 0.55 0.65 98 64 41 122 89 71 5,118 4,752 5,487
Prairie 81 40 47 67 0.19 0.35 0.73 55 44 27 74 63 37 9,017 9,898 10,704
Warm
forest

128 9.1 47 147 0.15 0.19 0.55 118 87 58 144 124 115 569 560 644

Note. N is a total number of valid SWE values by the snow class; R values with bold indicate significance, p < 0.05.

Figure 5. Box plots of correlation coefficient (R value) andmean absolute difference (MAD) of daily SSMI/S, GlobSnow‐2,
and UA snow water equivalent and daily NOAA airborne gamma radiation snow water equivalent for each gamma flight
line by five snow classes (tundra, taiga, maritime, prairie, and warm forest). The number below each box plot is a total
valid number of the statistic for each class.
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all land cover types. As compared to the SSMI/S SWE, the GlobSnow‐2 SWE has a better agreement with the
gamma SWE in the deciduous broadleaf forest and mixed forest. However, deeper SWE values (>250 mm)
were not measured by both SSMI/S and GlobSnow‐2 SWE regardless of land cover types even though they
are observed by the gamma SWE. In forested regions, the UA SWE has a much stronger agreement with
gamma SWE as compared to SSMI/S and GlobSnow‐2 SWE. To provide insights for watershed
management based on the land cover within the watershed, these comparisons were repeated for the
eight NOAA RFCs and are provided in Figures S1 and S2. The results indicate that the UA product
provides reliable SWE values for all RFCs with the exception of the California Nevada RFC.

Figure 7 summarizes the spatial statistics from Figures 2 and 3 by land cover types. SSMI/S SWE agrees best
with gamma SWE in croplands with moderate correlation (median: 0.47) and MAD values (33 mm, 42%) as
compared to the other classes. Negative or very weak correlations are found in the forest classes. The
GlobSnow‐2 SWE has much better correlations (median: 0.70, 0.65, and 0.69) and smaller MADs (median:
47, 57, and 33 mm; 48%, 41%, and 38%, respectively) with gamma SWE for deciduous broadleaf forest, mixed
forest, and cropland/natural vegetation. The differences between GlobSnow‐2 and SSMI/S SWE in evergreen
needleleaf forest, grasslands, and croplands are minimal. The evergreen needleleaf forest, typically located in
the northern Rocky Mountain and the Sierra Nevada regions, had the weakest agreement among the six
classes. The UA SWE shows very high correlations with gamma SWE for all land covers. While there are
fairly large MADs in the evergreen needleleaf forest and grasslands and large interquartile ranges (median:
87 mm, 55% and 35 mm, 49%, respectively), the UA SWE MAD values are much smaller than those of the
other SWE products.

In summary, SSMI/S SWE has a modest agreement only for the prairie snow class and the cropland land
cover. GlobSnow‐2 SWE agrees well in the maritime and warm forest snow classes and deciduous broadleaf
forest, mixed forest, and cropland/natural vegetation land cover. UA SWE has strong correlations regardless

Figure 6. Comparison of daily SSMI/S (top), GlobSnow‐2 (middle), and UA (bottom) snow water equivalent with daily NOAA airborne gamma radiation snow
water equivalent using all available data from 1982 to 2017 by six land cover types.

10.1029/2019WR025813Water Resources Research

CHO ET AL. 13 of 23



of class or land cover with larger MADs in tundra and taiga snow classes and the evergreen needleleaf forest
and grasslands land cover. For further details about the agreements by subgroup, a series of box plots for the
correlations where each of the snow (or land cover) classifications is subdivided into the six land cover types
(or five snow classes) appear in Figure S4.

5.3. Effect of Tree Cover Fraction and Topographic Heterogeneity

The three historical SWE data were analyzed by tree cover fraction to determine its effect on the differences
between the SWE products (Figure 8). The difference between SSMI/S and gamma SWE increases with
increasing tree fraction up to 100%. The difference between GlobSnow‐2 SWE and gamma SWE increased
to about 70 mm (median) with increasing tree fraction up to 50%. Above 50%, the differences remain
approximately constant. The differences between UA SWE and gamma SWE with forest fraction are mini-
mal as compared to those of the other SWE products. The UA SWE slightly underestimates the gamma
SWE from 0% to 80% tree fraction and then overestimates above 80%. In tree fractions below 30%, UA
SWE has positive outliers (overestimation) while the SSMI/S and GlobSnow‐2 SWE have negative outliers.

The impacts of three topographic characteristics (slope, elevation range, and elevation) on SWE differences
were examined using the same method as the preceding tree cover analysis. Figure 9 shows that slope and
elevation range (surface heterogeneity) are clearly related to the SWE difference between the three gridded
products and gamma SWE. For SSMI/S SWE, slope increases from 0.7° to 1.1° show increasing differences
from about 48 to 85 mm (median) and then remain constant for slopes steeper than 1.1°. The differences
between GlobSnow‐2 and gamma SWE are also relatively constant up to a slope of 0.7° and then increase
linearly with slope. In contrast, UA SWE differences increase monotonically from −20 (at 0.1° slope) to 24
mm (at 4.0° slope) with increasing slope. The elevation range has a similar impact on the SWE differences
to that of the slope. However, elevation itself does not have a coherent impact on the SWE differences. At
the highest elevation (2,500 m), all SWE products have the widest interquartile range, and the UA SWE
exceeds the gamma SWE.

Over 90% of the SWE values in the grasslands are found in the western United States, and all of the SWE
values in evergreen needleleaf forest are in the western United States (Table S1). The SWE differences were
analyzed by the topographic characteristics for these two western land cover types (Figure 10). In grasslands,
the slope and elevation range (surface heterogeneity) are clearly related to the SWE difference between UA
and gamma products. The SWE difference slightly increases with an increasing slope up to 3.2° and then
much greater increases at higher slopes. For elevation range, there is a similar pattern where the SWE dif-
ference remains approximately constant up to 80 m of elevation range and exponentially increases by 78
mm with increasing the elevation range up to 280 m. Compared to the slope and elevation range, elevation
has little effect on the SWE difference even though the interquartile range at 3,000 m elevation is very wide.
There is no consistent change in the SWE differences evident with increasing either slope or elevation range

Table 3
The Same as Table 2 but by the IGBP Land Cover Types

Land cover
type

Gamma mean
SWE (mm)

Mean (mm) R value MAD (mm) RMSD (mm) N

SSMI/S Glob‐2 UA SSMI/S Glob‐2 UA SSMI/S Glob‐2 UA SSMI/S Glob‐2 UA SSMI/S Glob‐2 UA

Evergreen
needleleaf
forest

206 26 13 274 0.09 0.19 0.58 181 194 111 232 241 182 1,612 1,651 1,735

Deciduous
broadleaf
forest

92 8.5 33 104 0.18 0.54 0.72 82 62 36 101 80 50 2,495 2,283 2,609

Mixed
forest

133 9 72 131 0 0.52 0.73 121 71 38 139 90 51 3,634 3,298 3,961

Grasslands 118 38 25 153 0.03 −0.04 0.76 97 102 62 145 154 115 2,440 2,555 2,640
Croplands 75 47 49 56 0.39 0.41 0.77 45 37 23 57 50 30 5,773 6,592 7,140
Cropland/
natural
vegetation

90 20 43 81 0.15 0.35 0.76 72 53 29 93 76 40 1,286 1,322 1,346

Note. N is a total number of valid SWE values by the land cover type; R values with bold indicate significance, p < 0.05.

10.1029/2019WR025813Water Resources Research

CHO ET AL. 14 of 23



in evergreen needleleaf forest. The UA SWE consistently overestimates the gamma SWE for all ranges of the
three topographic features.

Gamma SWE exceeds the UA SWE for tree cover fraction up to 80% but is lower than UA SWE for denser
canopies (Figure 8). Over 80% of these gamma flight lines with dense canopies are in the north‐central
United States and northeastern United States (e.g., deciduous broadleaf forest and mixed forest; Table S2).
The heavily forested areas (>80% tree cover) were further stratified by topographic characteristics for the
UA and gamma SWE differences. Figure 11 shows that slope and elevation range impact the SWE difference
in the heavily forested areas. The SWE difference increases by 40 and 45 mm (median) with increasing slope
and elevation range up to 2.5° and 120 m, respectively. Based on the result, heterogeneous terrains, repre-
sented as slope and roughness, may partially explain the difference between UA and gamma SWE in addi-
tion to the dense tree cover.

6. Discussion
6.1. Comparison of Three SWE Products

Deep SWE was not captured by SSMI/S retrievals regardless of snow class and land cover type. This is due
to a known limitation of passive microwave signal “saturation effect” for deep snowpack (approximately

Figure 7. Box plots of correlation coefficient (R value) and mean absolute difference (MAD, %) of daily SSMI/S,
GlobSnow‐2, and UA snow water equivalent and daily NOAA airborne gamma radiation snow water equivalent for
each gamma flight line by six land cover types (evergreen needleleaf forest [ENF], deciduous broadleaf forest [DBF], mixed
forest [MF], croplands [Cr], cropland/natural vegetation [Cr/N], and grasslands [Gr]). The number below each box plot is
a total valid number of the statistic for each class.
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1‐m snow depth) (Dong et al., 2005; Vuyovich et al., 2014). In the deep
snowpack, soil emissions are no longer detectable at the higher micro-
wave frequency (e.g., 37 GHz). Since the GlobSnow‐2 SWE product is
a fusion of ground measurements of snow depth and remotely sensed
data from passive microwave SSMI/S instruments, the product also
appears to inherit the saturation effect (Dawson et al., 2018; Takala
et al., 2011).

Both SSMI/S and GlobSnow‐2 largely underestimate SWE in forested land
cover types and the tundra and taiga snow classes. This may be due to the
known impact of forest cover on passive microwave SWE retrievals
(Foster et al., 2005; Vuyovich et al., 2014). However, similar patterns were
found in grasslands, even though the average percent tree cover in grass-
land flight lines is typically small (mean: 9.2%). Vuyovich et al. (2014)
found a disagreement between microwave and modeled SWE products
in the Upper Powder Basin, Wyoming (grasslands), even though the areas
have little vegetation and modest elevation ranges. This could be due to
the limited availability of ground observations to inform modeled pro-
ducts, or it may be due to other physical effects on the microwave signal
such as spatial variability and elevation gradients (Mätzler & Standley,
2000). Cai et al. (2017) mentioned that the elevation‐dependent factors,
besides forest fraction, affect the relationship between SWE and Tb.
Another possibility is that the redistribution of SWE by wind drifting of
the snowpack frequently occurs in tundra and taiga snow classes, likely
resulting in larger discrepancies between the SWE products (Clow et al.,
2012; Winstral et al., 2002).

The UA SWE had better performance with fewer errors in all snow and
land cover classes. This may be partly because the UA SWE product (4
× 4 km) has higher spatial resolution than the SSMI/S and GlobSnow‐2
SWE (25 × 25 km). However, there were fewer random errors (e.g., the
degree of dispersion in Figures 4 and 5) as well as lower systematic biases
(e.g., sustained overestimation/underestimation) between UA and
gamma SWE. The superiority of the UA SWE data may be primarily due
to the unique methodologies such as a new interpolation approach and
snow density parameterization as well as the use of the reliable ground‐
based observations from SNOTEL SWE, COOP snow depth network,
and PRISM precipitation and temperature data as inputs (Zeng et al.,
2018). The UA SWE is produced by interpolating “normalized SWE”
(SWE divided by accumulated snowfall), rather than SWE itself. The nor-
malized quantities of SWE were more spatially consistent and scale‐
independent than original SWE quantities (Broxton, Dawson, & Zeng,
2016). A new snow density parameterization with seasonal evolutions
may have contributed to the better performance compared to the other
SWE products (Dawson et al., 2017). Broxton, Zeng, and Dawson (2016)
mentioned that the features of snow density parameters helped overcome
a common deficiency in land surface models and reanalysis products of
too much ablation at near‐freezing temperatures.

The gamma SWE surveys have the highest accuracy in the north‐
central United States (e.g., NCRFC; croplands/prairie snow class) and
are extremely critical for that region because of its paucity of in situ

observations (Schroeder et al., 2019; Tuttle et al., 2017). Because the spatial extent of the gamma survey
is larger than most in situ observations, it also adds economic and social values in most regions that are
vulnerable to spring snowmelt floods including those with established observation networks
(Simonovic, 1999).

Figure 8. SWE differences of SSMI/S, GlobSnow‐2, and UA products and
airborne gamma radiation data by fractional tree cover (%). The white cir-
cles indicate every points in the bin.
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6.2. Effect of Tree Fraction

The underestimation of SSMI/S SWE is similar to the previous findings of Foster et al. (2005). In order to
overcome the uncertainty, they developed a bias‐corrected SWE algorithm with the forest information
defined as “forest factor.” For each 10th percentile of the fractional forest cover, different forest factors ran-
ging from 1 (no forest) to 2 (100% fractional forest cover) were multiplied by the original SWE algorithm to
correct the underestimation error. To test howmuch the uncertainty could be reduced, the corrected SSMI/S
SWE was computed by considering the fractional tree cover and compared to the original SWE (Figure S5).
Based on the result, the forest factor can partially reduce errors in the SSMI/S SWE. But there are still large
underestimates as compared to gamma SWE, probably due to the saturation effect of passive microwave sig-
nal on the deep snowpack. GlobSnow‐2 SWE performs better than SSMI/S SWE in areas with dense tree
cover but not in areas with sparser tree cover. SSMI/S SWE is impacted by the attenuation of microwave sig-
nal by tree canopy cover. In contrast, the GlobSnow‐2 algorithm includes ground‐based snow depth mea-
surements (Luojus et al., 2014) and forest canopy information in the HUT Snow Emission Model
(Pulliainen & Hallikainen, 2001), which likely reduces errors below those expected when only the micro-
wave emissions are considered. Regardless, GlobSnow‐2 still underestimates SWE for all tree cover fractions.
This could be partly related to the use of a constant low snow density (0.24 kg/m2) to estimate GlobSnow‐2
SWE without considering the seasonal evolution of snow density. The constant snow density generally
represents early winter conditions (0.22, 0.26, 0.23, and 0.24 kg/m2 in 1 October for alpine, maritime, prairie,
and tundra, respectively; Sturm et al., 2010). However, approximately 85% of the gamma SWE and
GlobSnow‐2 SWE values are obtained in midwinter and late winter from 1 February and 30 April. There
appears to be larger snow density due to compaction and snowpack metamorphism (Anderson, 2006;
Dawson et al., 2017; Hill et al., 2019; Sturm et al., 2010). In this period, the typical snow densities in most
snow classes from in situ measurements are larger than 0.24 kg/m2 (e.g., maritime: 0.30–0.38 kg/m2 and
prairie: 0.24–0.32 kg/m2; Dawson et al., 2017). Also, the underestimation of GlobSnow‐2 SWE could be

Figure 9. SWE differences of SSMI/S, GlobSnow‐2, and UA products and airborne gamma radiation data by slope
(degree), elevation range (m), and elevation (m). The gray circles indicate every points in the bin.
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due to the saturation effect of deep snow on the microwave signal as mentioned in the preceding section. For
example, while the mean value of the deep gamma SWE (>250 mm of gamma SWE; N = 1,077) is 355 mm
and UA SWE is 388 mm, the corresponding GlobSnow‐2 and SSMI/S SWE was 41 and 25 mm, respectively.
This indicates that the GlobSnow‐2 SWE still has a similar limitation due to the saturation effect of the
passive microwave signal for the deep snow (Dawson et al., 2018).

Results show that UA SWE performs well for a variety of forest covers. While the passive microwave mea-
surements are adversely affected by forest cover, forest cover does not affect UA SWE. The superiority of
the UA SWE product can be explained by the new snow density parameterization and reliable input data

Figure 10. The same as Figure 9 but for the SWE difference between UA and gamma SWE in grassland and evergreen needleleaf forest types only.

Figure 11. The same as Figure 10 but for the SWE difference between UA and gamma SWE in areas with more than 80% of tree cover fraction only.
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from SNOTEL and PRISM data in forested‐type regions. Unlike the other two products, the new snow den-
sity parameters used in the UA product likely reflect physical processes with an SWE evolution for all snow
classes (Dawson et al., 2017). Also, the PRISM precipitation and temperature data assimilate nearly 13,000
precipitation and 10,000 temperature point stations over the conterminous United States including a few
thousand stations over the northeastern United States (deciduous broadleaf forest and mixed forest types)
and western United States (evergreen needleleaf forest) (Daly et al., 2008). This suggests that UA SWE
may include the accuracy of PRISM precipitation data over the heavily forested regions if the partitioning
of snowfall and rainfall was fairly accurate. A recent study from Dawson et al. (2018) presented that UA
SWE had strong agreement with ASO SWE in California's Sierra Nevada. However, they evaluated the
UA SWE using 32 ASO SWE measurements only, and the forest cover fractions in the study area were less
than 35%. In addition to their results, our finding strongly supports the reliable accuracy of the UA SWE data
in forested regions.

6.3. Potential Sources of Error in Gamma SWE

While the operational NOAA airborne snow survey using a gamma radiation technique has successfully pro-
vided SWE observations over the last 40 years, this method can generate errors when estimating SWE. The
potential sources of error have been identified and well documented in previous studies (Carroll & Carroll,
1989a, 1989b; Glynn et al., 1988; Offenbacher & Colbeck, 1991). An uncertainty in baseline fall SMmeasure-
ment can potentially introduce biases into gamma SWE estimates. The operational standard approach
assumes that soil moisture conditions remain constant following the baseline fall survey. However, early‐
winter snowmelt and rainfall events can change the soil moisture after the fall survey, resulting in
underestimation/overestimation of the gamma SWE estimates. Our recent finding in Cho et al. (2018)
showed that standard gamma SWE values were improved by capturing the changes in soil moisture using
daily Soil Moisture Active Passive (SMAP) satellite data. An effect of forest biomass on the accuracy of air-
borne SWE measurements has been explored over forested watersheds (Carroll & Carroll, 1989a; Carroll
& Vose, 1984; Vogel et al., 1985). Carroll and Vose (1984) showed that there was 23 mm of RMSE between
airborne gamma SWE and ground‐based SWE with the moderate snowpack that ranged from 20 to 470 mm
in forest environments over Lake Superior and Saint John basins. Glynn et al. (1988) found that underesti-
mates of airborne gamma SWE (RMSE: 63 mm) could occur when gamma flight flew on forested areas with
the very deep snowpack (in situ SWE: 460 mm) in the Saint John Basin over the provinces of Quebec and
New Brunswick and the state of Maine.

The physical basis for a difference between UA SWE and gamma SWE in the regions with very high tree
cover fractions (Figure 8) could be either an overestimation of UA SWE or an underestimation of gamma
SWE or possibly both. High forest biomass may cause an underestimation of gamma SWE. Glynn et al.
(1988) and Carroll and Carroll (1989a) mentioned gamma radiation emitted by the forest biomass above
the snowpack as a source of error. There is a considerable amount of potassium and a minor amount of thor-
ium in the forested‐type land cover. This impact increases in a very deep snowpack because when gamma
radiation coming from the ground is attenuated by the snow, the radiation emitted by the forest biomass
above the deep snow can become a large portion of the radiation detected in the gamma aircraft.

Among the underestimated SWE values with the dense tree fraction, the larger underestimations occurred
over flight lines with high slopes and a range of elevations within the flight footprint (Figure 9). Previous
studies found that heterogeneous characteristics within a flight line, so‐called uneven effect, can cause
underestimates of gamma SWE (Carroll & Carroll, 1989b; Cork & Loijens, 1980). This heterogeneity is com-
monly caused by snow drifting or mountainous environment. A mean areal gamma SWE is calculated by
integrating measures of gamma attenuation rate by an optimal counting interval during a flying (Carroll,
2001). If a large spatial variability in the snowpack exists along a flight line, the measurements of the
attenuation of the gamma count rate are systematically underestimated (Cork & Loijens, 1980). For exam-
ple, consider an alternating shallow and deep snowpack over a flight path. During a first counting interval,
the gamma detector would measure gamma radiation from a uniform deep snowpack. Then, the flight
would measure gamma radiations from snow‐covered areas with different proportions of deep and shallow
snowpack until the gamma detector is centered above a uniform shallow snowpack. In the transition area
between deep and shallow snowpack, the larger gamma count rates tend to be measured, and the gamma
rates may generate underestimates of SWE. Carroll and Carroll (1989b) found that the degree of the
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underestimation is related to a variance of the distribution of ground‐based SWE measurements within a
flight footprint. If the variance in the gamma SWE is known, SWE underestimates can be corrected.
Because our results use the standard gamma radiation SWE product without manual corrections, results
could be improved by updating gamma SWE products in regions with heterogeneous characteristics. The
previous studies primarily focused on the spatial variation of snowpack itself and did not consider terrain.
The results in this study were not able to determine if an “uneven snow effect” was present, but terrain het-
erogeneity may have value as a proxy or may serve to add additional heterogeneous characteristics that also
impact the gamma retrievals.

7. Conclusion and Future Perspectives

In the snow science community, observation‐based long‐term gridded SWE products have been developed
for hydrological and climate research. However, an evaluation of the currently available SWE products
has been limited due to the lack of independent SWE data sets at a continental scale. Furthermore, as land
surface models and regional climate models continue to evolve at a rapid pace, independent and reliable
SWE data are required to evaluate SWE outputs from the models to identify potential limitations of snow
physical processes involved in each model. The historical 40‐year and ongoing NOAA airborne gamma
SWE record can be used as reference long‐term reliable SWE across the United States and southern
Canada. Even though the record has limited spatial and temporal coverages compared to the gridded satel-
lite and reanalysis products, the record may be useful for snow hydrologists and modelers in providing accu-
rate SWE values in various environments.

In this study, three long‐term daily SWE products (more than 30 years) (SSMI/S, GlobSnow‐2, and UA) were
evaluated using an airborne gamma radiation SWE record collected by NOAANOHRSC. Comparisons were
made by seasonal snow cover classes and land cover types from 1982 to 2017 in the conterminous United
States, and this provided several interesting insights. We found that SSMI/S and GlobSnow‐2 SWE products
showed similar patterns against the airborne gamma SWE: modest performances in croplands and grass-
lands land cover types and prairie of snow class over the north‐central United States and poor performances
(extremely underestimated SWE) in evergreen needleleaf forest and grasslands and tundra and taiga in
mountainous regions over the western United States. These may correspond with weaknesses of inherent
microwave satellite‐driven signals. However, compared to SSMI/S SWE, GlobSnow‐2 SWE had better agree-
ment with gamma SWE in some forested land cover types, mixed forest, deciduous broadleaf forest, and
warm forest and maritime of seasonal snow classes in the northeastern United States. UA SWE has better
agreement with gamma SWE as compared to SSMI/S and GlobSnow‐2 SWE in all land cover types and snow
classes, while there are relatively weak agreements in the evergreen needleleaf forest and grasslands land
cover and tundra snow class, which are likely due to potential limitations of UA products as well as gamma
SWE in the mountainous regions (e.g., spatial heterogeneity). Through the sensitivity analysis to forest frac-
tion, we found that UA SWE is much less affected by forest fraction, while the SSMI/S and GlobSnow‐2 SWE
have increasing negative biases with increasing tree fraction within the gamma flight footprint. The effect of
tree cover fraction to GlobSnow‐2 SWE is less than in larger fractions (>60%). With a known challenge of
measuring SWE in evergreen needleleaf forest and tundra classes, unexpected weak agreement of UA
SWE with gamma SWE in grasslands will be the focus of our future research to better understand the phy-
sical factors impacting on the results.

Additional use of gamma SWE products for validation of remote sensing observations andmodeled SWEwill
likely necessitate additional inquiry into the gamma observation capabilities. Studies have shown that the
improvements to the operational gamma SWE products are possible by minimizing the errors, even though
potential sources of errors were identified before the 1990s (e.g., changes in fall soil moisture, the spatial var-
iance within the footprint, and dense forest effect). Future studies can utilize state‐of‐the‐art high‐resolution
earth observation products (e.g., lidar, synthetic aperture radar, andmulti‐spectrometer) to quantify snow or
land characteristics within a gamma flight footprint to improve this valuable resource.
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