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Abstract. Terrestrial and airborne laser scanning and struc-
ture from motion techniques have emerged as viable meth-
ods to map snow depths. While these systems have advanced
snow hydrology, these techniques have noted limitations in
either horizontal or vertical resolution. Lidar on an unpiloted
aerial vehicle (UAV) is another potential method to observe
field- and slope-scale variations at the vertical resolutions
needed to resolve local variations in snowpack depth and to
quantify snow depth when snowpacks are shallow. This paper
provides some of the earliest snow depth mapping results on
the landscape scale that were measured using lidar on a UAV.
The system, which uses modest-cost, commercially available
components, was assessed in a mixed deciduous and conifer-
ous forest and open field for a thin snowpack (< 20 cm). The
lidar-classified point clouds had an average of 90 and 364
points/m2 ground returns in the forest and field, respectively.
In the field, in situ and lidar mean snow depths, at 0.4 m hor-
izontal resolution, had a mean absolute difference of 0.96 cm
and a root mean square error of 1.22 cm. At 1 m horizon-
tal resolution, the field snow depth confidence intervals were
consistently less than 1 cm. The forest areas had reduced per-
formance with a mean absolute difference of 9.6 cm, a root
mean square error of 10.5 cm, and an average one-sided con-
fidence interval of 3.5 cm. Although the mean lidar snow
depths were only 10.3 cm in the field and 6.0 cm in the forest,
a pairwise Steel–Dwass test showed that snow depths were

significantly different between the coniferous forest, the de-
ciduous forest, and the field land covers (p< 0.0001). Snow
depths were shallower, and snow depth confidence intervals
were higher in areas with steep slopes. Results of this study
suggest that performance depends on both the point cloud
density, which can be increased or decreased by modifying
the flight plan over different vegetation types, and the grid
cell variability that depends on site surface conditions.

1 Introduction

Over the past 2 decades, remote-sensing methods, provid-
ing spatially continuous, high-resolution snow depth maps at
local and regional scales, have greatly advanced the ability
to characterize the spatiotemporal variability in snow depth
over earlier work using snow probes. Spaceborne photogram-
metry (e.g., Marti et al., 2016; McGrath et al., 2019; Shaw et
al., 2020), airborne laser scanning (ALS) (Deems et al., 2013;
Harpold et al., 2014; Kirchner et al., 2014), terrestrial laser
scanning (TLS) (Grünewald et al., 2010; Currier et al., 2019),
and structure-from-motion photogrammetry (SfM) (Nolan
et al., 2015; Bühler et al., 2016; Harder et al., 2016) have
emerged as viable methods to map surface elevations with
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snow-off and snow-on conditions in order to differentially
map snow depths.

ALS and TLS both rely on well-established lidar (light de-
tection and ranging) technology. TLS, applied from a fixed
ground position, is able to measure snow depth with high
vertical accuracy (Fey et al., 2019) and has the advantage
of being relatively low-cost and portable, making repeat ob-
servations possible. However, TLS uncertainties are caused
by large incident angles, occlusion from hills and trees that
can cause data gaps in forested domains (Currier et al., 2019;
Palace et al., 2016), and challenges to provide a stable scan-
ner position for the tripod in snow-on conditions (Schweizer
et al., 2003). ALS technology such as that deployed on the
Airborne Snow Observatory (ASO) (Painter et al., 2016) has
the advantage of being able to cover large areas, but it is ex-
tremely expensive and has limited availability and flexibil-
ity of deployment, which impacts its use for most studies.
ALS also has issues with observation gaps in forested regions
(Broxton et al., 2015; Currier and Lundquist, 2018; Mazzotti
et al., 2019) but possibly to a lesser extent than TLS (Cur-
rier et al., 2019). The typical vertical accuracies from these
platforms are on the order of 10 cm (Kraus and Pfeirer, 2011;
Deems et al., 2013) with a relatively low return density (∼ 10
returns/m2) (Cook et al., 2013). These accuracies and densi-
ties may not be adequate to observe spatial variations at point
scales (0 to 5 m) to hillslope and field scales (1–100 m) and to
detect snow depth changes over short timescales due to single
events, densification, wind redistribution, sloughing of snow-
off slopes, trapping of snow by vegetation, and forest canopy
interception (Clark et al., 2011; Mott et al., 2011, 2018).

SfM can create a digital surface model (DSM) from pho-
tographs taken using a standard consumer-grade digital cam-
era. When using an unpiloted aerial system (UAS), which
deploys a camera on an unpiloted aerial vehicle (UAV), SfM
is a low-cost method that has the capacity for routine snow
depth monitoring (Adams et al., 2018; Bühler et al., 2016;
De Michele et al., 2016; Harder et al., 2016; Vander Jagt et
al., 2015). Reported accuracies range from 8 to 30 cm using
UAS SfM (Adams et al., 2018; Bühler et al., 2016; Goetz
and Brenning, 2019; Harder et al., 2016; Meyer and Skiles,
2019; Harder et al., 2020). The primary drawbacks of UAS
SfM as compared to lidar for mapping snow depth are that the
DSM needs to be georeferenced using ground control points
(GCPs) with known coordinates and may require significant
manual steps (Tonkin and Midgley, 2016; Meyer and Skiles,
2019), although new techniques are emerging that may re-
duce field data collection time (Gabrlik et al., 2019; Meyer
and Skiles, 2019). Dense canopy or vegetation can reduce
performance when snow compresses the vegetation relative
to the snow-off imagery or when above-canopy vegetation is
falsely interpreted to be the snow surface (Bühler et al., 2017;
Cimoli et al., 2017; De Michele et al., 2016; Fernandes et al.,
2018; Harder et al., 2016; Nolan et al., 2015). Canopy effects
impact SfM snow mapping capability in regions where snow-
packs are masked by dense forest canopies. The inability to

sense portions of the ground or snow surface beneath dense
canopies results in fine-scale variations in snow depth, such
as tree wells, not being accurately represented in UAS SfM
snow depth products (Harder et al., 2020).

UAS lidar, a UAV-mounted laser scanning system, has
been widely used in forest-related research (e.g., canopy
height and forest change detection) (Wallace et al., 2012,
2014) and appears to offer the advantages of both the UAS
SfM and lidar for snow depth mapping. UAS lidar also elim-
inates many of the drawbacks that arise from ALS and TLS
systems discussed earlier. However, to date there is only one
previous study that estimates snow depth using UAS-based
lidar (Harder et al., 2020). Harder et al. (2020) compared
snow depth estimates between lidar versus SfM techniques
using in situ snow depth observations in mountain and prairie
environments, focusing on sub-canopy snow, which has been
a challenge to measure in the snow remote-sensing commu-
nity. Using a considerably more expensive UAS-based lidar
system (∼CAD 300K), they found that the lidar system tends
to have lower errors than the SfM to capture sub-canopy
snow distributions at moderate depth of snowpack (up to 2
and 1 m of the maximum depth for mountain and prairie ar-
eas, respectively). In this study, we assess the ability of a
more modest-cost UAS lidar system (∼USD 70K) to map
snow depth, focusing on shallow and ephemeral snowpack
(< 20 cm). The pilot study described here serves as a proof
of concept for providing a high-vertical-resolution snowpack
data set in open terrain and forests in the northeastern United
States. Snow depth magnitude and variability are mapped
and analyzed for differences by land use and slope. The study
highlights results from the 2019 winter season that provide
insights as to the potential for UAS lidar mapping of snow
depth as well as details about the system, its deployment,
and operational and validation challenges. We explore the
capability of UAS through the comparison of contemporary
field-based snow depth measurements collected in a land-
scape containing fields and forests.

2 Site, data, and methods

2.1 Site

The test flights were conducted at the University of New
Hampshire’s Thompson Farm Research Observatory in
southeastern New Hampshire, United States (43.10892◦ N,
70.94853◦W; 35 m above sea level, a.s.l.), which was cho-
sen for its mixed-hardwood-forest and open-field land cov-
ers (Burakowski et al., 2015; Burakowski et al., 2018) that
are characteristic of the region (Fig. 1). Thompson Farm has
an area of 0.83 km2 and little topographic relief (Perron et
al., 2004). The agricultural fields are actively managed for
pasture grass. The mixed deciduous and coniferous forest is
composed primarily of white pine (Pinus strobus), northern
red oak (Quercus rubra), red maple (Acer rubrum), shagbark
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Figure 1. Aerial imagery of Thompson Farm, Durham, NH, from 2015 showing both forest and field regions with lidar flight lines (top).
Ground imagery (A to F) collected in December 2019; locations are noted on the top map and show the surface and leaf-off forest conditions
(bottom panels).

hickory (Carya ovata), and white oak (Quercus alba) (Per-
ron et al., 2004). There are two logging access roads that run
north–south through the pasture and into the western forest
section.

2.2 UAS laser scanning

A series of UAS lidar surveys were conducted over approx-
imately a 0.1 km2 (9.8 ha) area (430 m× 225 m) within the
farm during the winter 2018/2019 (Fig. 1). Here, we focus
on the snow-on flight conducted on 23 January 2019 and the
snow-off flight conducted on 11 April 2019. We selected the
23 January 2019 flight because it had snowed approximately
11.5 cm, with 1.8 cm of snow water equivalent from 19 to
20 January 2019, and the air temperature was persistently be-
low freezing prior to the flight. For the 11 April 2019 snow-

off flight, the deciduous component of the canopy and under-
story was both dormant.

We used an Eagle XF UAS manufactured by UAV Amer-
ica, which carried a small, lightweight lidar sensor (Velodyne
VLP-16) suitable for UAS deployment (see Table S1 in the
Supplement). The VLP-16 is a 16-channel lidar sensor with a
30◦ vertical field of view with rotating lasers that are spaced
evenly between −15 and +15◦. Each channel rotates to pro-
vide a horizontal field of view of 360◦. The VLP-16 collects
up to 300 000 points per second with an accuracy of ±3 cm
at a range of 100 m. The sensor was mounted with the ver-
tical field of view parallel with the ground. The payload is
equipped with an Applanix APX-15 UAV inertial navigation
system (INS), which has 2–5 cm positional, 0.025◦ roll and
pitch, and 0.08◦ true heading uncertainties following post-
processing. The INS has a measurement rate of 200 Hz, al-
lowing for a timestamp to associate each lidar pulse with the
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closest data for latitude, longitude, altitude, and perspective
information (roll, pitch, and yaw), which is required for geo-
referencing returns.

Flights were conducted to maximize spatial coverage
while conserving batteries due to the limited flight time of
the Eagle XF (approx. 9 min flight time from ascent to de-
scent). Because of the limited flight time, flights were con-
ducted at an altitude of 81 m for greater spatial coverage,
and multiple return flight lines were necessary for battery
exchanges (Fig. 1). Automated flights were conducted using
UgCS flight planning software. Flight speed was 7 m/s, with
a total of 12 parallel flight lines with targeted overlap of 40 %.
A complete survey of the study area took approximately 2 h.
This includes the time required to calibrate the INS and set
up and break down the UAS. Because of degrading accuracy
at distances > 100 m with the VLP-16, returns acquired out-
side of ±30◦ of nadir view angles in the horizontal field of
view were filtered to limit target distance and improve overall
accuracy.

Applanix APX-15 INS data were post-processed to a
Smoothed Best Estimate of Trajectory (SBET) file using
POSPac Mobile Mapping Suite (MMS) UAV (v. 8.2.1), re-
sulting in approximately 3 cm positional accuracy for both
the snow-on and snow-off flights. Lidar returns were indi-
vidually georeferenced by synching timestamps of returns
from the lidar sensor with timestamps of position and attitude
data from the post-processed INS data. Georeferenced point
clouds were produced and output to LAS (LASer) files using
Headwall Photonics, Inc.’s LidarTools software. The bare-
earth and snow-on point clouds were georeferenced solely
using the INS data respective to each flight. The point clouds
were not co-registered to each other as there were no reliable
common ground control points between surveys. For UAS
lidar snow depth surveying, co-registration between point
clouds would likely be unattainable due to insufficient com-
mon ground control. We determined that results would be
more meaningful when bare-earth and snow-on point clouds
were processed solely relying on the capability of the INS.
Boresighting calibration was performed using returns from
the first two parallel flight lines that were collected in op-
posite directions (i.e., antiparallel). A roll offset was deter-
mined using 10 m cross-sections along the flight lines over
flat terrain, and a pitch offset was determined using 1 m
cross-sections across the flight lines over terrain with mod-
erate relief (see Fig. S2 in the Supplement). Resulting LAS
point clouds were generated for the entire study area and pro-
jected in WGS84 UTM Zone 19N (EPSG 32619). Flight and
filtering parameters of the raw point cloud resulted in return
densities of approximately 150 returns/m2 for each of the two
flights.

2.3 Lidar classification and gridding

Three-dimensional point clouds were processed using the
progressive morphological filter algorithm (PMF) in the lidR

package (https://github.com/Jean-Romain/lidR, last access:
3 March 2021) of R (v. 3.4; R Core Team, 2020) to iden-
tify ground returns. Briefly, the PMF operates iteratively on
sets of two parameters, window size and elevation thresh-
olds, to erode and dilate point cloud data sets to estimate sur-
face topography. The result of the PMF is that non-ground
returns (i.e., trees, shrubs, and noise) are filtered out of point
cloud data sets so that only returns from ground surfaces re-
main. The two data sets, non-ground returns and ground re-
turns from the original point cloud, are coded according to
LAS specifications and merged. For a full explanation of the
PMF, see Zhang et al. (2003). For ground classification, point
clouds were chunked into 100 m square tiles with a 15 m
buffer on all sides using catalog options in lidR to ensure
returns near tile edges were classified. Processing was dis-
tributed across eight computing cores to improve efficiency.
The PMF was parameterized using a set of window sizes of
1, 3, 5, and 9 m and elevation thresholds of 0.2, 1.5, 3, and
7 m, which were determined by varying value sets and assess-
ing digital terrain models (DTMs) to determine the parame-
ter sets that produced a visually smooth surface over a dense
grid (sensu Muir et al., 2017). Following ground classifica-
tion for each tile, returns within the 15 m tile buffers were
removed, and all resulting 100 m square ground-classified
tiles were merged. The resulting point clouds for each data
set included both the classified ground returns and the non-
ground returns. Snow-on and snow-off ground point clouds
were gridded at 0.1, 0.2, 0.4, 0.5, and 1.0 m spatial resolu-
tions using the average of all grid points within each grid
cell (Currier et al., 2019). Gridded products for each data set
were forced to the same coordinate grid to generate DTMs as
raster files.

2.4 Slope and vegetation cover classification and
analysis

The snow-off DTM was used to develop a 1 m resolution map
of slope (Horn, 1981). Vegetation cover type (field or for-
est) was determined from optical imagery. A canopy height
model (CHM) was developed by subtracting the DTM pro-
duced using ground-classified points from the DSM pro-
duced using all lidar points. This results in a digital model
consisting solely of canopy heights with no topography. The
CHM generation used raster images with a 1 m resolution.
The forested area was further classified as coniferous or de-
ciduous for the study region. Within the forested area, the
CHM was used to distinguish the upper canopy that did not
lose needles or foliage from other forested regions with trees
with no leaves using our snow-off survey that was collected
in leaf-off conditions in the spring. A 3× 3 maximum con-
volve filter was used to enhance the edges of canopy crowns
and expand smaller regions that might have just 1 pixel of
an intact canopy or a hole in a larger canopy (Palace et al.,
2008). A 15 m threshold was used to differentiate between
the upper-level intact coniferous canopy and canopies that
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had lost their leaves. CHM pixels that were below this thresh-
old were deemed deciduous canopies (see Fig. S3 in Supple-
ment for intermediate figure). The 5.6 ha forested area has a
forest type that is 65 % deciduous and 35 % coniferous.

Once the vegetation forest type was classified, three sets of
5000 points were extracted, respectively, in the field, in the
eastern forest, and in the western forest (Palace et al., 2017).
At each of these random points, slope, vegetation type (field,
deciduous, coniferous), snow depth, and snow depth confi-
dence interval values were extracted. Because of missing val-
ues in the raster images, not all random points extracted val-
ues. Slope was assigned to one of three categories: 0–10◦,
10–20◦, and greater than 20◦. Because the extracted data
sets (i.e., snow depth, confidence interval, and slope) were
not normally distributed, the non-parametric Steel–Dwass
method test was used to test for differences. The Steel–
Dwass test has been previously used in geophysical work
to examine non-parametric data sets (Slotznick et al., 2020).
This non-parametric method is useful when sample numbers
are large, and groups are small because it allows type I errors
to be controlled (Dolgun and Demirhan, 2017).

2.5 In situ observations

A magnaprobe (Sturm and Holmgren, 2018) was used to
compare to the UAS lidar survey over two transects. The first
transect consisted of 12 sample locations in the field and 5
locations in the eastern forest of our study site. The second
transect consisted of 11 sample locations in the western for-
est. Sample locations were separated by approximately 10 m.
The field transect follows the prevailing westerly wind direc-
tion, with its western side at the foot of a modest depression
(approximately 3–4 m below the land further to the west) and
the eastern side transitioning into a wooded area. Following
Harder et al. (2016) and Bühler et al. (2016), each sample
location includes five samples in a cross pattern, with the
four ordinal directions sampled approximately 20 cm from
the center sampling location in the cross. The five samples
are used to provide a measure of snow depth central ten-
dency and variation over a 0.4 m× 0.4 m pixel. Because the
magnaprobe GPS has an absolute accuracy of 8 m, a Trim-
ble© Geo7X Global Navigation Satellite System (GNSS) po-
sitioning unit with Zephr™ antenna was used to collect each
sampling location’s center point with an estimated horizon-
tal uncertainty of 2.51 cm (standard deviation σ = 0.95 cm)
and 4.17 cm (σ = 4.60 cm) for the field and forest, respec-
tively, after differential correction. Along the same forest and
field transects, a Federal snow tube sampler was used to col-
lect a single sample of snow depth and snow water equiva-
lent (SWE) at each magnaprobe sample location for a total of
12 field samples and 16 forest samples. SWE was measured
by inserting the aluminum tube vertically into the snowpack,
and a core was extracted and weighed using a spring scale.

An independent study collected soil frost depth from three
locations at the Thompson Farm Research Observatory us-

ing the Cold Regions Research and Engineering Labora-
tory (CRREL) Gandahl-style frost tubes. The frost tubes
have flexible polyethylene inner tubing filled with methy-
lene blue dye whose color change is easy to differentiate
when extruded from ice (Gandahl, 1957). A nylon string
housed inside the polyethylene tubing affixes ice during pe-
riods of thaw. The outer tubing consists of PVC pipe in-
stalled between 0.4 and 0.5 m below the soil surface (Ri-
card et al., 1976; Sharratt and McCool, 2005). Prior to the
19 and 20 January 2019 snowfall event, soil frost was 23.5 to
25.5 cm in the field and 5.5 to 8.5 cm in the western forest.

2.6 Snow depth uncertainty assessment

The snow depth accuracy was assessed by comparing the li-
dar snow depth measurements to the magnaprobe measure-
ments. Here, accuracy is the measure of the agreement of the
lidar snow depth measurements relative to the in situ mea-
surements (Eberhard et al., 2021; Maune and Nayegandhi,
2018). Error statistics were calculated, and the results were
summarized by forest and field locations. At each mag-
naprobe location, the average and standard deviation of the
five magnaprobe samples were calculated. The average lidar
snow depth was determined for a 0.4 m× 0.4 m cell centered
on the center magnaprobe location. The mean absolute differ-
ence (MAD) and root mean square deviation (RMSD) were
used to characterize the differences between the magnaprobe
snow depths and the lidar snow depths.

The one-sided width of the 95 % confidence limits
(CI95 %,±) for each grid cell’s lidar-derived estimate of the
mean snow depth is a measure of uncertainty. The CI95 %,±
values are used to compare the reliability of the snow depth
estimates among cells. The CI95 %,± values were calculated
using each grid cell’s bare-earth and snow-on pooled-sample
standard deviation (sd) and the number of bare-earth and
snow-on lidar returns (n and m, respectively) (Helsel and
Hirsh, 2002).

CI95 %,± = tcritsd

√(
1
n
+

1
m

)
, (1)

where tcrit is the critical value of the Student’s t distribution
with a significance level of 0.05, and sd is the cell’s pooled-
sample standard deviation, which was calculated as

sd =

√
(n− 1)s2

off+ (m− 1)s2
on

(n+m− 2)
, (2)

where son and soff are the standard deviations of the snow-
on and snow-off lidar ground return elevations, respectively.
The son and soff values are a measure of the grid cell vari-
ability. This variability depends on the lidar instrument’s rel-
ative accuracy (Maune and Nayegandhi, 2018), which in-
cludes intra-swatch accuracy (i.e., precision or repeatability
of measurements) and inter-swath accuracy (i.e., differences
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in elevations between overlapping swaths) as well as surface
elevation variations and terrain-induced errors (Deems et al.,
2013). The contribution from the individual sources of vari-
ability was not assessed in the current study.

3 Results and discussion

3.1 Snow depth survey

The snow-on and snow-off lidar ground returns yielded an
average point cloud density of 90 and 364 points/m2 in the
forest and field, respectively, with 6.7 % of the 1 m2 forest
cells and 0.03 % of the 1 m2 field cells having fewer than 5
points/m2 (Fig. 2). There was a wide range of the point cloud
densities (Fig. 2b). The highest point cloud density occurred
for those cells sampled by both the regular flight lines and
the multiple return flight lines conducted for the three battery
exchanges. The vast majority of field cells (82 %) have more
than 100 points/m2. Only 1 % of the field cells had fewer
than 25 points/m2, and most of those cells were in shrubbery
or dense vegetation surrounding the small pond in the cen-
ter of the study site (Fig. 1). In contrast, 41 % of the forest
cells had more than 100 points/m2, and nearly 20 % of the
forest cells had fewer than 25 points/m2, with 8 % having
fewer than 10 points/m2 (Fig. 2b). Only 0.086 % and 0.95 %
of the 1 m resolution field and forest cells, respectively, had
no ground returns. The number of points per cell decreases
with decreasing cell size (Fig. 2a). In the field, reducing the
gridded resolution from 1 to 0.5 m lowers the mean cell re-
turn count to 91 points per cell on average. Thus a 0.5 m field
cell has approximately the same number of returns as a 1 m
forest cell. At a 0.2 m spatial resolution, the mean number of
ground returns is 14.6 and 3.6 in the field and forest, respec-
tively.

3.2 Lidar and in situ snow depth comparison

Based on the magnaprobe snow depth and UAS-mapped
snow depth measurements, the accuracy of lidar snow depth
measurements differed between field and forest cells (Fig. 3).
In the field, the mean snow depth from the magnaprobe
(12.2 cm± 0.56 cm) was only slightly greater than that from
the lidar (11.2 cm± 0.72 cm), and the MAD and RMSD val-
ues were 0.96 cm and 1.22 cm, respectively. In the forest, the
mean snow depth from the magnaprobe (15.2 cm± 2.3 cm)
was twice as large as the lidar snow depths (7.8 cm± 6.3 cm),
and the MAD and RMSD were 9.6 and 10.5 cm, respec-
tively. The mean snow depth from the Federal snow tube was
12.9 cm± 0.71 cm and 13.1 cm± 1.9 cm in the field and for-
est, respectively. There is a notable absolute low bias in the
lidar forest snow depth relative to the magnaprobe and snow
tube for the western forest in particular, with the exception
of one site.

To provide insight into differences between the forest and
field observations, height profiles of classified returns were

calculated for 25 m2 square regions centered on all forest
(n= 12) and field (n= 7) study plots from lidar data. Height
profiles were averaged for each site type, from here on re-
ferred to as mean height profiles (Fig. 4). To do this, all lidar
returns were extracted from the bounding box of each plot,
and then the mean elevation of ground returns was calculated
within each plot. Return height profiles for each plot were
determined by subtracting the mean ground elevation of the
plot from each return, and then the normalized return ele-
vations were binned in 0.1 m height increments. Within the
forests, an average of 2142 and 2889 returns were classified
as ground and non-ground, respectively, in snow-free condi-
tions for each 25 m2 plot. Snow-on conditions had a compa-
rable number of ground returns (2218) but fewer non-ground
returns (1721). In field plots, an average of 5666 ground re-
turns and 154 non-ground returns in snow-free conditions
were obtained for each 25 m2 plot, with 7567 ground returns
and 25 non-ground returns in snow-on conditions. Figure 4
also shows that there is a greater range of ground return ele-
vations in the forest as compared to the field. In forest plots,
ground return elevations had an average standard deviation of
0.157 and 0.154 m in snow-free and snow-on conditions, re-
spectively, while in field plots, ground return elevations had
standard deviations of 0.058 and 0.050 m in snow-free and
snow-on conditions, respectively.

3.3 Snow depth maps from UAS lidar

The UAS-mapped snow depth, mapped by subtracting snow-
off DTMs from snow-on DTMs, revealed a shallow snow-
pack whose depth ranges from less than 2 to over 18 cm
(Fig. 5). The mean lidar snow depth was 10.3 cm in the
field and 6.0 cm in the forest. Despite the shallow condi-
tions, spatially coherent patterns are readily discernible. The
field snowpack depth had higher spatial variability than the
western forest snowpack and more spatial organization. In
the field, the deepest snow was in the low-lying northeast-
ern areas that are sheltered from westerly winds. A relatively
moderate and consistent snowpack occurred in the south-
ern part of the eastern field and west of the small pond.
The shallowest snowpack was found in the center portion
of the field, which is slightly elevated and, unlike most of
the field, was not mowed. Lower snow depth at the for-
est edge distinguishes the field-to-forest transition. A non-
parametric Steel–Dwass test found significant variation for
the mean snow depth among the two forest types and field
(p< 0.0001) (Fig. 6a). Figure 6a and b also reveal that there
are some negative snow depths in the two forest types that are
due to the uncertainty in the snow-on and snow-off DTMs.

A pairwise Steel–Dwass test showed that snow depths
were significantly different between the three pairs of field
and forest types (p< 0.0001). When comparing just field
and forest as categories, the test also found significant dif-
ferences for snow depth (p< 0.0001). Snow depth was also
determined to be significantly different among the three slope
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Figure 2. (a) Average lidar point cloud density of the ground returns versus cell size by land cover and snow-on and snow-off state. (b) Prob-
ability density function for the number of lidar ground returns by square meter for the forest (gray) and the field (white).

Figure 3. Comparison between the magnaprobe (gray fill) and snow
tube (black fill) versus the lidar snow depth measurements by loca-
tion. The mean and 95 % confidence intervals were calculated using
the five magnaprobe snow depths and the lidar snow depths (Eq. 1),
averaged over a 0.4 m× 0.4 m grid cell. Individual snow-tube snow
depth measurements are shown without confidence intervals.

group categories using the Steel–Dwass test, where regions
with a limited slope (Group 1) had more decidedly different
snow than steeper regions (p< 0.0001) (Fig. 6b).

The values of the one-sided confidence interval of the
mean snow depth estimate are remarkably consistent in the
field and typically are between 0.5 1 cm regardless of snow
depth (Fig. 5b). Modestly larger confidence intervals occur
adjacent to the north–south road, where the fields were not

mowed prior to winter, as well as the northern and south-
ern extents of the flight lines, likely due to the reduced sam-
pling density. The forest had an average one-sided confidence
interval of 3.5 cm, which was considerably higher than the
field. Where the forest is predominantly comprised of de-
ciduous trees, the typical one-sided confidence intervals of
the mean snow depth were as low as 1 to 2 cm. The largest
one-sided confidence intervals occurred in the middle of the
field, where there was dense shrubbery; at the edge of the
fields; and in clusters within the forest where the forest sec-
tions were dominated by coniferous trees (Pinus strobus).
The nexus of flight lines in the take-off and landing area
resulted in a local area with very high confidence. A non-
parametric Steel–Dwass test found significant variation for
confidence intervals of the mean snow depth among the two
forest types and field (p< 0.0001) (Fig. 6c). A pairwise
Steel–Dwass test showed that confidence intervals were sig-
nificantly different among the three pairs of field and forest
types (p< 0.0001). Confidence intervals were also signifi-
cantly different among the three slope categories, as deter-
mined using a Steel–Dwass test (p< 0.0001) (Fig. 6d).

3.4 Point cloud density, spatial resolution, and canopy
profiles

Confidence intervals for the mean snow depths by grid cell
were examined in light of the point cloud density and the
spatial resolution at which lidar returns were aggregated.
The confidence interval width for a mean snow depth of a
1 m2 area decreased dramatically as the lidar point cloud
density increased (Fig. 7a). Except for the cells with fewer
than 10 points/m2, forest cells had larger confidence intervals
for the mean depths than field cells for a given sample size.
When the density exceeds 25 points/m2 in the field and 50
points/m2 in the forest, confidence intervals were typically
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Figure 4. Mean height profiles for all ground (green) and non-ground (blue) lidar returns within a 5 m× 5 m region centered on each transect
plot in snow-free conditions (a, b) and snow-on conditions (c, d) in forest (a, c) and field (b, d) study plots.

2 cm. The cells with the highest point cloud densities had
one-sided confidence intervals of about 1 and 1.5 cm for the
field and forest cells, respectively. The field cells with more
than 50 points/m2 did not have noticeably smaller confidence
intervals, but the increased density did reduce the number of
cells with anomalously small confidence intervals. Given the
high lidar point cloud density for the field cells, it is possi-
ble that reasonable estimates of snow depth can be made at
scales finer than 1 m (Fig. 7b).

In addition to the lidar point cloud density, the ability to
reduce the confidence interval of the mean snow depth also
depends on the ground surface variability within a cell as
well as the lidar performance. For this site and its shallow
snowpack, the grid cell variability in the ground surface el-
evation, estimated by calculating the standard deviation of
the lidar elevation values, is found to depend primarily on
the cell size and, to a more limited extent, on land cover and
snow cover (Fig. 8a). Snow cover reduced the grid cell vari-
ability in the field by about 1 cm but has a limited effect in
the forest. It is possible that the modest snowpack was able
to flatten the higher grass in the field, while the forest’s veg-
etation and ground surface features that dominate the grid
cell variability were only minimally compacted by the snow.
Within the 1 m grid cells, snow depth variability was much
lower in the field than the forest (Fig. 8b). Both distributions
had a positive skew. Typical standard deviations of the lidar
surface elevation values within a 10 cm cell were on the or-
der of 1.5 and 2 cm for the field and forest, respectively. That
variability doubled for a 20 cm cell. The grid cell variabil-
ity increased gradually to about 3 to 4 cm in the field and to
about 6 cm in the forest.

Thus, confidence intervals largely depended on the point
cloud density in the lidar cloud because the standard devi-

ation of a cell’s surface elevation is relatively constant for
snow depth resolutions from 0.5 to 1 m (Fig. 8a). In the
field, reducing the cell size from 1 to 0.5 m still yields about
100 points/m2 and provides snow depth estimates within
±1.5 cm. Because the forest cells required a higher ground
return density to capture these snow depths within 1 cm, any
reduction in cell size below 1 m greatly increased the confi-
dence intervals of the cells’ mean snow depth.

4 Challenges and recommended improvements to UAS
lidar snow depth mapping

Despite UAS-based lidar’s increasing use in the natural sci-
ences and capacity to make high-resolution snow maps, there
are many operational and technical challenges that require
consideration prior to successfully conducting UAS-based
lidar surveys that produce research-grade, high-resolution
snow depth data. For the lidar surveys, the hardware and sup-
porting software analysis tools can be expensive and require
trained pilots and lidar data analysis specialists. In this sec-
tion, we present some general considerations regarding val-
idation of the lidar snow depth maps, selection, and deploy-
ment of a lidar sensor on a UAV for snow depth mapping as
well as specific insights that we experienced when using our
system.

4.1 In situ and UAS sampling

This study’s lidar snow depth performance metrics are com-
parable to those from the more extensive lidar surveys made
by Harder et al. (2020). In the field, our snow depth errors,
1 cm bias and 1.2 cm RMSD, were modestly better than those
from their open-site snow depth, with a 3 cm bias and RMSE
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Figure 5. Average (a) snow depth values, (b) one-sided confidence intervals, and (c) topography and forest cover type. Snow depth and
confidence intervals calculated from the snow-on and snow-off lidar point clouds for 1 m2 cells at Thompson Farm, Durham, NH. Topography
and forest cover type determined from snow-off lidar point clouds on snow-off flight for 1 m2 cells conducted on 11 April 2019.

values on the order of 10 cm. In the forest, our snow depth er-
rors, 7 cm bias and 10 cm RMSD, were also modestly lower
than those from their forest sites, with a 9 to 13 cm bias
and 15 cm RMSE. While it is difficult to make direct com-
parison across different study sites, snow conditions, and
ground validation approaches, these early findings indicate
that UAS lidar has the capability of mapping snow depths in
open and forested regions and has improved performance as
compared to previous SfM results, particularly for vegetated
surface. It is also noteworthy that this study’s mapping was

conducted using the Velodyne Puck series, a laser scanner
adapted from the assisted- and autonomous-vehicle applica-
tions rather than the specialized Riegl miniVUX-1UAV used
by Harder et al. (2020), resulting in a complete mapping sys-
tem that was approximately one-third the costs of their Riegl
system.

While UAS-based lidar surveys can measure snow depth
to within a centimeter at high spatial resolutions, validation
of those observations is challenging. A time-consuming col-
lection of high-accuracy GNSS survey points was required to
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Figure 6. Snow depths (a, b) and their one-sided confidence intervals (c, d) from the random sample points of the field and forest at Thompson
Farm, Durham, NH, on 23 January 2019 from the individual cells for 1 m2 cells by vegetation cover (a, c) and slope group (b, d). Boxplots
show the lower quartile, median, upper quartile, and whiskers with the median value noted. Because of missing values in the raster images,
not all random points extracted values and resulted in different numbers of sample points for vegetation cover classes.

co-locate magnaprobe and lidar observations. Surveying and
marking sample locations prior to the winter season might
reduce this effort. However, the use of sampling stakes risks
modifying snow processes at the sample locations and poten-
tially biasing the snowpack and incurring destructive sam-
pling impacts if the same location is being repeatedly vis-
ited over a season. It is also challenging to make in situ
snow depth measurements that provide centimeter accuracy.
In this study, the magnaprobe in situ snow depth observa-
tions made in the forest were considerably higher than the

lidar observations as compared to the open field, where the
magnaprobe and lidar measurements were within 1 cm. Pre-
vious studies also found that snow depth observations from
ALS measurements are biased lower than those from snow
probe observations in the forest (Hopkinson et al., 2004, Cur-
rier et al., 2019; Harder et al., 2020). In past studies, the
causes of these differences have been partially attributed to
the snow probe’s ability to penetrate the soil and vegetation,
human observers tending to make snow depth measurements
in locations with relatively high snow (Sturm and Holmgren,
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Figure 7. One-sided confidence intervals of the mean snow depth
values in the field and forest at Thompson Farm, Durham, NH, on
23 January 2019 from the individual cells for 1 m2 cells by land
cover and point cloud density (a) and for grid resolutions ranging
from 0.1 to 5 m (b). Boxplots show the lower quartile, median, up-
per quartile, and whiskers.

2018), and the reduced accuracy of the GNSS in the forest.
Our study suggests additional issues in forest sampling, in-
cluding enhanced ground surface variability in forested ar-
eas relative to adjacent field areas and reduced lidar returns
in forested areas as compared to field areas, combined with
sampling issues, to contribute to the higher uncertainty in the
forest snow depths observed in our study.

In this study, the cold temperatures and snow-free condi-
tions prior to the 19 and 20 January 2019 snowfall event re-
sulted in deeper frozen soils (23.5 to 25.5 cm) in the field
and shallower soil frost depth (5.5 to 8.5 cm) in the west-
ern forest, which would have limited the probe penetration
into soils at both sites. However, the forest has a 1–4 cm
thick leaf litter layer that may have been penetrated by the
magnaprobe. The average Federal snow sampler tube depths
(13.1 cm) were not as deep as the magnaprobe (15.2 cm) and
thus more closely match the lidar snow depth (7.8 cm; see
Fig. 3), though a considerably low bias (∼ 5.3 cm) similar to
that found by Harder et al. (2020) persists in the lidar snow

depth relative to the Federal snow sampler snow depths. Ad-
ditional factors such as downed logs, thick understory, and
fine-scale topographic features (i.e., small boulders and hum-
mocky terrain) as well as reduced ground return density may
contribute to the lidar snow depth errors in a forest, whereas
these factors are absent in the field.

An improved understanding of forest canopy impacts on
lidar returns is also warranted. Recent work has demon-
strated that lidar pulses are “lost” at a much higher rate in
forest canopies than open ground due to interception, ab-
sorption, and scattering through canopy transmission, with
the loss ratio largely influenced by the range of the target
from the sensor (Liu et al., 2020). The data that we present
in this paper were acquired using constant flight speed and
at a consistent altitude above target areas. Because of this,
it is feasible that forest canopy conditions and variable un-
derstory vegetation density may have resulted in lost pulses
and increased uncertainty in our data set. Indeed, we did ob-
serve lower return densities for both ground and all returns
in forested areas in our data set (Fig. 4).

One possible outcome of these lidar sampling issues in
forests was a significant difference in snow depth confidence
intervals between field and forest types and among slope
groups. Confidence intervals were highest in conifer stands
and on steep slopes and lowest in the field. This is likely
partially the result of lower ground return density in forests
due to the combined effects of lost pulses and canopy oc-
clusion in forested areas. Additionally, this observation may
be driven by increased variability in snow-off ground sur-
face due to higher variability in the subnivean terrain in the
forested areas of the study site (e.g., pockets of duff and
woody debris). On cells where slopes exceed 20◦, there is
more variability in ground return elevations over shorter dis-
tances due to errors in horizontal directions and spreading
of the laser spot (Deems et al., 2013), which would par-
tially drive larger confidence intervals of ground surface ele-
vation for pixels located in high-relief areas. These relatively
high-slope areas were more common in forested areas of the
study site, and the DTM uncertainty resulting when there are
high slopes also carries through snow depth estimation. Snow
depth was significantly different between field and forested
areas as well as between conifer and deciduous forest types,
despite the relatively high uncertainty. This indicates the pos-
sible influence of tree canopies on snow accumulation due to
enhanced snow interception in forests (see reviews in Clark
et al., 2011) and particularly in conifer stands but also could
be the result of an under-sampled ground surface in forested
areas relative to field areas. Despite challenges with sampling
in the forest area, some degree of coherence for snow depth
in the forest is apparent. The forest interception effects may
be captured on average through forest structure parameters
such as canopy closure and leaf area index that have tradi-
tionally been used in snow models with canopy–snow inter-
actions (see reviews in snow model inter-comparison project
– SNOWMIP2 by Essery et al., 2009; Rutter et al., 2009).
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Figure 8. Lidar surface elevation standard deviations by (a) cell size and land cover. Cell standard deviations are the average of the individual
cells’ standard deviation values calculated for cells with side dimensions ranging from 0.1 to 1.0 m. (b) Probability density function of the
snow depth’s pooled standard deviation for each 1 m2 cell in the forest (gray) and field (hashed).

However, the finer-scale heterogeneity may benefit from ad-
ditional parameters such as the mean distance to canopy and
total gap area (Moeser et al., 2016) or modifications that re-
flect variations in canopy structure (Mazzotti et al., 2019).
Snow depth was also significantly different among the three
slope groups, possibly due to wind-driven snow displacement
and sloughing on slopes during accumulation.

4.2 Flight planning

Because high-lift UAVs capable of carrying a lidar
sensor package have challenges that may differ from
small consumer-grade UAVs used mainly for optical-
photogrammetry surveying, a well-formulated flight plan
that addresses weather conditions, logistics of flying at a
proposed site, flight lines, UAS equipment, and personnel
is clearly needed. Weather impacts operations. UAS surveys
cannot be conducted when there is any type of precipitation
or in dense fog or clouds because moisture can cause elec-
tronic components to malfunction, and moisture build-up on
the propellers can also adversely affect lift production. De-
pending on the UAS, wind speeds exceeding 7 to 10 m/s may
make flights more difficult. This project’s Eagle XF high-lift-
capacity UAV cannot be flown comfortably in winds greater
than 8 m/s. At the study site, wind speeds often exceeded
this threshold on the days immediately following snowfall
except early in the morning. High wind speeds can also sig-
nificantly reduce battery life as well as impact the accuracy
of sensor observations. Low air temperatures can cause bat-
teries to rapidly discharge. For winter UAS surveys, all flight
and operational batteries were kept warm in a building, ve-
hicle, or insulated cooler prior to the UAS survey. This also
applies to the computer used to upload flight lines and re-
lay telemetry information. A MIL-STD-810-certified Pana-
sonic Toughbook was used in this study to handle the antici-
pated cold temperatures. Additionally, cold temperatures can

severely limit the dexterity of the person manipulating the
flight controls.

These high-lift UAVs also have the potential to cause sig-
nificant damage to person and property. The selection of a
survey site not only needs to meet the scientific objectives of
the UAS lidar survey but also must have the proper attributes
for safe and legal UAV operation including permission to op-
erate the UAV at the site. Visual line of sight (VLOS) of the
UAS needs to be maintained throughout the flight. When it
is difficult to maintain VLOS (e.g., flying over forested or
mountainous sites), spotters can be used if there is constant
two-way communication between the spotters and the person
operating the flight controls. For this study, an on-site walk-
up tower with a spotter was necessary while the UAS was
flown over the forest.

The deployment of a UAS lidar requires additional flight
patterns designed for boresighting to ensure that point clouds
are aligned (Painter et al., 2016). Provided that GNSS data
are accurate, the most common reason for misalignment of
point clouds is boresight angle errors (Li et al., 2019). Bore-
sighting is the process of calculating the differences between
lidar sensor and IMU (inertial measurement unit) roll, pitch,
and yaw angle measurements to correct those errors in point
clouds. Due to battery flight time limitations, we were un-
able to complete the flight pattern that is commonly used for
boresighting alignment. Because of this, we leveraged our
first two antiparallel flight lines for boresighting calibration.
Additional details on boresighting calibration, our technique
due to the flight time limitations, and examples of roll and
pitch alignment errors observed during this field campaign
appear in the Supplement.

4.3 UAS sampling strategies

While lidar calibration and data post-processing require-
ments are quite similar for UAS and airborne surveys, the
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UAS lidar surveys presented in this study have key differ-
ences from previous ALS surveys. As noted above, UAS
flight durations are considerably shorter, resulting in limited
spatial coverage as compared to previous ALS snow depth
surveys. This study took approximately 2 h to map a 0.1 km2

area. An advantage of UAS over ALS surveys is that the aver-
age point cloud density is much higher and has fewer missing
pixels in the forest. This study’s sampling densities and the
proportion of areas with no ground returns are quite different
from previous airborne lidar snow depth studies. This study
had ground returns of 90 and 364 points/m2 in the forest and
field, respectively, and had no ground returns in only 0.086 %
and 0.95 % of the 1 m resolution field and forest cells, re-
spectively. In contrast, ALS surveys typically report surface
model densities between 8 and 16 points/m2 (Broxton et al.,
2015, 2019; Currier et al., 2019; Kirchner et al., 2014) and
ground returns between 3 and 6 points/m2 (Broxton et al.,
2019; Kirchner et al., 2014). ALS-derived snow depth maps
have a much greater proportion of areas that are masked due
to no ground returns, particularly under trees, with masking
areas ranging from less than 10 % to more than 23 % (Har-
pold et al., 2014; Mazzotti et al., 2019). While gap filling is
possible, interpolation using measured snow depth values to
fill under trees can overestimate snow depth (Zheng et al.,
2016). Based on our work comparing field and forest lidar
collections from a UAS, we suggest testing alternative flight
plans, including reduced flight speed over forest canopies to
account for lost pulses and canopy returns to produce ground
return density that is comparable to field ground return den-
sity and to further reduce the number of missing pixels in an
acquisition area. It is worth noting that as the capabilities of
UAVs, power supplies, and lightweight sensors continue to
advance at an accelerated rate, UAS platforms will shortly
rival the spatial coverage attainable by manned aircraft while
maintaining improved efficiency and cost effectiveness.

A well-understood challenge exists when developing a
spatial-sampling strategy in which, for given resources, there
is a trade-off between spatial extent and sampling density
(Clark et al., 2011). Increasing flight altitude can expand the
spatial extent of an aerial survey. However, flying at higher
altitudes results in a decreased point density. In theory, a
higher point density could be achieved by slower speeds and
increased swath overlap. The targeted spatial extent of an
aerial survey dictates whether a manned aircraft or a UAV
should be used. If the targeted area has a limited domain,
then using a manned airborne platform is probably overkill
and inefficient for many studies, and the use of a UAV would
be more cost-effective. However, as the domain increases in
size, additional batteries would be required, much of the bat-
tery power would be used to reach the outer limits of the
domain, and the ability to maintain the required line of sight
could be difficult. Thus, there are end-members for survey
sites or regions where it is self-evident as to whether a UAV
or an airborne platform should be used, but that leaves con-
siderable gray areas where an appropriate choice of UAV

platform with a well-designed mission could stretch the do-
main. Future research and technological advances are needed
to offer insights for snow science observation platforms and
trade-offs.

5 Conclusions

This paper describes and demonstrates a UAS-based lidar
survey for snow depth mapping using commercially available
components. The snow depth map was assessed in a mixed
deciduous and coniferous forest and open field with little re-
lief over a thin snowpack. The UAS includes an Eagle XF
UAV manufactured by UAV America, a small, lightweight
VLP-16 lidar (Velodyne, Inc.), and an Applanix APX-15
UAV INS. The INS has a measurement rate of 200 Hz, al-
lowing returns to be georeferenced without ground control
points. Data, post-processed to an SBET file, resulted in
approximately 3 cm positional accuracy. Flights were con-
ducted at an altitude of 81 m and flight speed of 7 m/s, with
a total of 12 parallel flight lines with targeted overlap of
40 %. Once the point clouds were classified as ground and
non-ground points, the flights yielded an average of 90 and
364 ground points/m2 in the forest canopy and field, respec-
tively, with 6.7 % of the forest and 0.03 % of the field cells
having fewer than 5 points/m2.

The snow depth map, generated by subtracting snow-off
from snow-on DTMs derived from the resultant point clouds,
reveals a snowpack whose depth ranges from less than 2
to over 18 cm. For both snow depth and confidence inter-
vals, differences were found between vegetation cover types
and slope, indicating complex snow–vegetation interaction
that can be observed by UAS lidar return numbers. For
0.4 m× 0.4 m cells, the in situ and lidar mean snow depths in
the field were nearly identical, with MAD and RMSD values
of approximately 1 cm. In the forest, the in situ mean snow
depths from a magnaprobe were twice as large as the lidar
snow depths, with a correspondingly high RMSD. These for-
est differences have numerous possible explanations: (1) the
snow probe’s ability to penetrate the soil and vegetation re-
sulting in random errors; (2) higher uncertainty in areas with
canopy cover, variable ground surface, and high slope that
occur more commonly in forested areas; (3) reduced total
and ground return density in forests due to occlusion and
lost pulses. Nevertheless, the results support previous find-
ings indicating that there are limits to lidar snow depth val-
idation at high horizontal and vertical spatial resolutions in
some land covers and conditions. Mapped with 1 m2 cells, a
0.5 to 1 cm snow depth confidence interval was achieved con-
sistently in the field, with confidence intervals increasing to
median values of 4.0 cm in the deciduous forest and 5.9 cm in
the coniferous forest. In the field, snow depth can be mapped
at finer spatial resolutions with limited reduction in perfor-
mance when reducing the cell size to 0.5 m× 0.5 m and still
achieve snow depth confidence intervals of less than 5 cm for
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a 0.2 m× 0.2 m cell size. Performance depends on both the
point cloud density, which can be increased or decreased by
changing the flight plan, and the grid cell variability that de-
pends on site surface conditions.
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