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A B S T R A C T   

Land surface modeling provides the opportunity to investigate winter soil processes such as soil freezing and 
thawing over large domains. However, the variability in simulated winter soil characteristics among land surface 
models and forcing datasets is not well understood. In this study, a nine-member ensemble was employed to 
characterize the spatial and inter-annual variability of three winter soil characteristics, annual number of frozen 
days, annual minimum temperature and annual number of freeze-thaw cycles over North America during the 
water years 2010–2016. The ensemble, including three land surface model (JULES, Noah2.7.1 and Noah-MP) 
and three forcing datasets (ECMWF, GDAS and MERRA2), was developed through the Snow Ensemble Uncer
tainty Project (SEUP). In many regions, there was remarkably good agreement across the ensemble for the winter 
soil temperatures. However, the variability among the ensemble’s annual number of frozen days, as quantified 
with standard deviation, exceeded 150 days at the northern Pacific coastline. While the differences among the 
ensemble members’ annual minimum temperature were typically <3 ◦C, the differences exceeded 6 ◦C north of 
50◦N. The ensemble members generally agreed within one to three freeze-thaw cycles in mid latitude regions, 
Alaska, and the south and west coasts of the USA. High variability among the ensemble, more than six freeze- 
thaw cycles, occurred in the Great Plains, northern Pacific coastline, and along the Appalachian Mountains. 
Differences in winter soil temperature characteristics were more apparent among the LSMs rather than the 
meteorological forcing datasets. Except for maritime regions, the Noah2.7.1 members had the fewest annual 
number of frozen days and the least number of freeze-thaw cycles. Noah2.7.1 also had the coldest annual 
minimum temperatures except for ephemeral regions. Comparisons between in-situ observations and the SEUP 
estimates of winter soil characteristics revealed that the modeled frozen period was much longer than observed, 
that the modeled annual minimum temperatures were much colder than observed, and the modeled freeze-thaw 
cycles occurred more frequently than observed. Excluding the high latitude sites, the observed frozen period is 
less than two months with the minimum temperature above − 5 ◦C at most of the studied sites, while the 
ensemble members simulated, on average, a four month frozen period with − 10 ◦C minimum temperature. 
Errors in capturing snow during the accumulation period appear to impact differences in modeled versus 
observed soil temperature throughout the entire winter.   

1. Introduction 

The frequency and severity of soil freeze and thaw processes have 
thermodynamic, hydrological, geochemical and ecological significance 
for the Earth’s land-atmosphere system. Winter soil temperatures 
modulate regional climate and land-atmospheric boundary processes by 
controlling surface and subsurface energy fluxes (Zhang and Sun, 2011; 

Guo et al., 2011; Yang and Wang, 2019), evapotranspiration (Zhang 
et al., 2011; Liu et al., 2019) and albedo (Guo et al., 2011). From a 
hydrologic perspective, the soil freeze/thaw state strongly alters parti
tioning of infiltration and overland flow due to the reduced hydraulic 
conductivity of frozen soil (Kane, 1980; Seyfried and Murdock, 1997; 
Cherkauer and Lettenmaier, 1999; McCauley et al., 2002; Roy et al., 
2021), and regulates flood timing and intensity over the course of winter 
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and early spring (Bayard et al., 2005; Niu and Yang, 2006). Also, during 
cold seasons, the soil temperature gradient induces soil water migration 
to colder layers resulting in the redistribution of soil moisture (Perfect 
and Williams, 1980). Minimum soil temperature and FT state also 
contribute to soil biotic activities (Kreyling et al., 2012; Kreyling, 2019), 
root mortality (Repo et al., 2014), ecosystem diversity and productivity 
(Euskirchen et al., 2006; Kreyling et al., 2008), plant species composi
tions (Joseph and Henry, 2008), nutrient cycling (Wang et al., 2017), 
and carbon dynamics and mineralization (Vestgarden and Austnes, 
2009; Fuss et al., 2016). 

Despite the importance of winter soil temperature, very few reliable 
long-term in-situ soil temperature observations are available and even 
fewer soil temperature networks exist (Xia et al., 2013). In addition to 
the limited spatial distribution of soil temperature observations, tem
poral inconsistency of these point measurements restricts their appli
cation to investigations of soil thermal processes at large spatial scales. 
Even though remote sensing techniques offer an alternative to in-situ 
point measurements that addresses the spatial scale issues, remote 
sensing of soil state is challenging and complex due to the presence of 
vegetation and snow layers on the ground (Kim et al., 2021, Johnston 
et al., 2021). Therefore, model-derived estimations of soil temperature 
are often employed as alternatives when soil temperature data with 
large spatiotemporal coverage is required. Previous studies used land 
surface model (LSM) estimates of soil temperature to study the severity 
of freeze-thaw (FT) cycles (Xia et al., 2011), sub-pixel variability of FT 
remote sensing products (Johnston et al., 2021), improvement of the 
synthetic brightness temperatures (Han et al., 2014), carbon cycles un
certainty (Wieder et al., 2018) and carbon and nitrogen dynamics 
(Bonan et al., 2013; Shi et al., 2016). 

Land surface models have shown promise for data assimilation 
frameworks to achieve more skillful estimations of soil states. For 
example, Johnston et al. (2021) used an ensemble of LSMs to investigate 
the relationship among satellite-based FT products and ensemble mean 
soil temperatures. They concluded that a new FT classification frame
work can be achieved through fusion of high-resolution LSM derived 
temperature data and remote sensing products. However, the un
certainties associated with LSMs’ estimations could impact the esti
mates’ skills of data assimilation procedures or multi-model ensembles 
(Liu and Gupta, 2007; Bohn et al., 2010; Dumedah and Walker, 2014). 
Thus, understanding and quantifying such uncertainties is indispensable 
before any application of LSMs. 

The commonly used multi-model approach provides an opportunity 
to explore the variabilities in model simulations across a range of models 
with different structures and forcing input (Bohn et al., 2010; Mudryk 
et al., 2015; Kumar et al., 2017; Vuyovich et al., 2019; Kim et al., 2021). 
Despite the value of this method in characterizing the uncertainty in 
hydrologic simulations and climate modeling, to the best of our 
knowledge, there has been no attempt to characterize LSMs derived 
winter soil characteristics and their uncertainties among different LSMs 
over North America. Previous studies have typically evaluated an indi
vidual land surface model’s ability to simulate a soil’s winter thermo
dynamic regime at various spatial scales (Zhu and Liang, 2005; Godfrey 
and Stensrud, 2008; Xia et al., 2011; Xia et al., 2013; Li et al., 2021) but 
have not provided insights as to the variabilities among different 
models. Model performance is linked to forcing data and other state 
variables including snow characteristics which substantially modulate 
winter soil processes (Stieglitz et al., 2003; Zhang, 2005; Lawrence and 
Slater, 2010; Wang et al., 2016; Li et al., 2021). Such state variables and 
the complex interaction of soil and snowpack vary among different 
models, depending upon their physics and snow schemes. Previous snow 
models intercomparisons, such as SnowMIP (Etchevers et al., 2004) and 
ESM-SnowMIP (Krinner et al., 2018), and SEUP (Kim et al., 2021) have 
shown that snow water equivalent (SWE), snow depth, snow albedo, and 
snow cover duration can vary significantly among the models, 
depending on the locations, yet the ensemble mean may closely follow 
the observations. Thus, an understanding of similarities and differences 

among models is as necessary as comparisons between models and 
observations. 

Motivated by the current gap in understanding LSMs’ performance 
and consistency in cold season modeled soil characteristics, this study 
seeks to quantify the variabilities in such characteristics over North 
America through a multi-model ensemble evaluation across models and 
in comparison to observations. The cold season soil characteristics used 
here refer to the annual number of frozen days, the annual number of FT 
cycles and the annual minimum temperature. This study employs an 
ensemble of three land surface models (Noah 2.7.1, Noah with Multi- 
Parameterization [Noah-MP], Joint UK Land Environment Simulator 
[JULES]) and three meteorological forcings (European Centre for 
Medium-Range Weather Forecasts [ECMWF], Global Data Assimilation 
System [GDAS], and Modern-Era Retrospective Analysis for Research 
and Applications, version 2 [MERRA2]), developed through Snow 
Ensemble Uncertainty Project (SEUP) (Kim et al., 2021), to provide an 
estimate of variability and uncertainty in modeled winter soil temper
ature characteristics. In addition to ensemble evaluation, we aim to 
assess the performance of the ensemble members with respect to in-situ 
observations. This study also explores how models’ snow simulations 
impact soil temperature estimates through the course of winter. There
fore, the primary goal is to address the following questions:  

• Where, when, and how do the SEUP ensemble members agree and 
disagree on the winter characteristics of soil and experience high 
inter-annual variability?  

• How do the model derived soil metrics compare with observations?  
• How does the temporal evolution of modeled soil temperature relate 

to snow water equivalent (SWE) accumulation and ablation in the 
SEUP? 

2. Data and methods 

2.1. Snow ensemble uncertainty project and ensemble configuration 

Snow Ensemble Uncertainty Project (SEUP) was designed to quantify 
SWE uncertainty across North America using an ensemble-based land 
surface modeling approach (Kim et al., 2021). The original SEUP 
ensemble consists of 12 members, generated by the combination of four 
land surface models (JULES, Noah 2.7.1, Noah-MP3.6 and Catchment 
version LSM [CLSM-F2.5]) and three meteorological forcing datasets 
(ECMWF, GDAS and MERRA2). In this study, CLSM-F2.5 model is 
excluded from the original SEUP ensemble because its 3 soil layers (0–2, 
2–100 and 100–200 cm) configuration is not consistent with the other 
models (described in section 2.2). The selected land surface models and 
forcing datasets have been employed at key operational centers and 
systems, and they are able to provide a valuable basis to study uncer
tainty associated with winter temperature characteristics of soil. 

The SEUP study domain is North America, covering from 4.875◦N to 
71.875◦N and 168.625◦W to 51.875◦W on a 0.05◦ equidistant cylin
drical grid (Fig. 1). The models were run with 3 h time steps from 2000 
to 2017. The first nine years (2000–2009) were served as spin-up time 
for LSM initialization and the rest were used for analysis in this study. 

2.1.1. Land surface models 
Originally developed from the Met Office Surface Exchange Scheme 

(MOSES) (Cox et al., 1999), the JULES (Best et al., 2011; Clark et al., 
2011) is a key model of the Met Office’s modeling infrastructure and 
NERC’s Earth System Modeling Strategy. This community land model is 
widely used in the climate and weather forecast models both as a 
standalone model and as the land surface component. JULES typically 
has 4 soil layers. To calculate subsurface temperature in JULES model, 
one dimensional heat diffusion equations are used including the heat 
fluxes of solid-liquid phase transition of water. The Dharssi’s equation 
(Dharssi et al., 2009) was used to describe soil thermal conductivity. For 
the SEUP ensemble, the model was run with depths of 10, 25, 65, and 
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100 cm. JULES’s multi-layer snow scheme and diagnostic snow albedo 
were used in SEUP to simulate snow. This snow scheme estimates a 
density, ice content and liquid water content for each layer. Using snow 
density, JULES provides snow thermal conductivity estimates (Best 
et al., 2011). JULES assumes freezing temperature equal to 273.15 K. 

The community Noah land surface model (Ek et al., 2003), developed 
based on the Oregon State University (OSU) LSM (Mahrt and Pan, 1984), 
was first executed in National Centers for Environmental Prediction 
(NCEP) Eta Data Assimilation System (EDAS), followed by imple
mentation in the NCEP Global Forecast System (GFS) (Mitchell et al., 
2005) and later in Climate Forecast System Reanalysis (CFSR) (Saha 
et al., 2006). Since then, the Noah model has been widely employed as a 
numerical weather prediction (NWP) and climate model for operational 
and research applications. For example, it has been adopted at the NCEP 
as NWP model, in the North America Land Data Assimilation System 
(NLDAS) (Mitchell et al., 2004) and the Land Information System (Pe
ters-Lidard et al., 2007). The SEUP ensemble employs version 2.7.1 of 
Noah. Structurally, the model consists of four soil layers (here with 
depths of 10, 30, 60, and 100 cm from top to bottom, resulting in a 2 m 
soil column), a single canopy layer, and a single layer snowpack. Noah 
model employs Jordan’s equation (Jordan, 1991) for snow thermal 
conductivity. Frozen ground processes are described by Koren et al. 
(1999). Soil moisture and soil temperature are calculated from the one 
dimensional diffusive form of Richard’s equation and the heat diffusion 
equation respectively. The soil heat flux formulation of Noah model 
takes account of the heat flux through thin patchy snow cover since the 
model allows exposed ground for the snow depth below a certain 
threshold. More detailed descriptions of the governing equations and the 
parameterizations of Noah model can be found in Ek et al. (2003) and 
Koren et al. (1999). Freezing temperature in Noah model is equal to 
273.15 K. 

Originating from the Noah LSM, Noah-MP benefits from multiple 
parameterization options for the key land-atmosphere interaction pro
cesses (Niu et al., 2011). In addition to its global applicability, it 
currently is in the core of National Water Model (NWM) and RAL/HAP 
WRF convection-permitting climate modeling efforts. While the depths 
of Noah soil layers are retained, its bulk snow layer is improved to a 
multiple layer snowpack in Noah-MP model. Depending on the total 
depth of snow, up to three snow layers can be present on the top of Noah- 
MP soil column. In the SEUP ensemble, the Noah-MP3.6 was run with 
the default options. For the frozen soil processes, the default scheme is 
Niu and Yang (2006) which employs a more general form of freezing- 
point depression equation in comparison to the Koren et al. (1999) 
method. In this scheme, freezing temperature is assumed to be 273.16 K. 
Yen’s scheme (Yen, 1965) and Peters-Lidard’s scheme (Peters-Lidard 
et al., 1998) were used to describe snow and soil thermal conductivity, 
respectively. Details on Noah-MP physics and schemes can be found in 
Niu et al. (2011) and Niu and Yang (2006). 

Although all three models use the same principle, surface energy 

balance equation and one dimensional heat diffusion equation, to 
simulate soil temperature, they compute the components of the energy 
balance equation differently (Best et al., 2011; Ek et al., 2003; Niu et al., 
2011). The models also employ different approaches to describe soil 
freezing processes and supercooled liquid water in soil (Cox et al., 1999; 
Koren et al., 1999; Niu and Yang, 2006). Moreover, representation of 
frozen ground characteristics including thermal conductivity and 
permeability differ. The other key difference among the SEUP ensemble 
models is the representation of snow processes including partitioning 
precipitation into snow and rain, snowpack layering, thermal conduc
tivity and albedo. 

2.1.2. Forcing datasets 
The European Center for Medium-Range Weather Forecasts 

(ECMWF; Molteni et al., 1996) global atmospheric reanalysis is pro
duced by assimilating vast amounts of surface observations and high 
resolution satellite datasets. Gridded meteorological data from the 
ECMWF-Integrated Forecast System [IFS], used in the SEUP, are 
generated by assimilating available atmospheric observations every 12 h 
into a forecast model with surface meteorological fields. 

Developed at the Environmental Modeling Center [EMC] of the Na
tional Oceanic and Atmospheric Administration [NOAA] / NCEP, the 
Global Data Assimilation System [GDAS] (Derber et al., 1991) assimi
lates various types of observations such as ground observations, balloon 
data, wind profiler data, airborne data and satellite-derived data into an 
atmospheric model that can be employed for initializing weather fore
cast systems. 

The Modern-Era Retrospective Analysis for Research and Applica
tions, version 2 (MERRA2; (Gelaro et al., 2017; Molod et al., 2015) 
produced by NASA’s Global Modeling and Assimilation Office [GMAO] 
is a state-of-the-art global atmospheric reanalysis providing data. To 
produce MERRA2, Goddard Earth Observing System [GEOS-5] data 
assimilation system is used to assimilate in-situ and satellite observa
tions including modern hyperspectral radiance, microwave observations 
and GPS-Radio Occultation datasets. Further details and descriptions on 
the data assimilation system and data production procedures can be 
found at Gelaro et al. (2017). 

All the three original coarse resolution meteorological datasets were 
downscaled to a 5 km grid, first, prior to forcing the SEUP land surface 
models. Details on the downscaling methods for the forcing variables 
can be found in Kim et al. (2021). 

2.2. Ancillary datasets 

In this study, the Liston and Sturm (2021) snow classification with 
2.5 arcmin × 2.5 arcmin (~5 km) spatial resolution is used to evaluate 
variability in cold seasons soil characteristics of SEUP ensemble at a 
continental scale across different snow classes. The Liston and Sturm 
(2021) seasonal snow cover classification system employs a binary 

Fig. 1. Snow Classes over Snow Ensemble Un
certainty Project (SEUP) domain. Black circles 
and their associated numbers illustrate location of 
the in-situ sites in this study. These sites are: 1- 
Granite Creek, (AK) 2-Upper Nome Creek (AK), 
3-Arapaho Ridge (CO), 4-Gobblers Knob(AK), 5- 
Mundare AGDM (Canada, Alberta), 6-Streeter 
(ND), 7-South Fork (IA), 8-Hubbard Brook (NH), 
9-Beaver Dams (UT), 10-Crater Meadows (ID), 
11-MF Nooksack (WA), 12-Cayuse Pass (WA), 13- 
Lind (WA), 14-St Joseph’s (IN), 15-Bushland 
(TX).   
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decision tree to link air temperature, precipitation, and wind speed to 
stratigraphic and textural properties of snow covers (e.g. sequence of 
snow layers, thickness, density, etc.) in order to categorize terrestrial 
snow into seven classes: tundra, boreal forest, maritime, ephemeral, 
prairie, montane forest, and ice. 

To evaluate the relationship between SEUP estimation of soil tem
perature and observed soil temperature as well as impacts of snow cover 
(if available), 15 stations are selected from North Dakota Agricultural 
Weather Network (NDAWN), Alberta Climate Information Service 
(ACIS), United States Department of Agriculture (USDA) Natural Re
sources Conservation Service (NRCS) Snowpack Telemetry (SNOTEL) 
network and Soil Climate Analysis Network (SCAN) (Table 1). These 15 
stations were chosen to provide a reasonable spatial coverage over 
different snow classes (Fig. 1). Hourly observations of soil temperature 
at 5 cm below the surface, air temperature, SWE or snow depth (if 
available) at these stations are obtained. To control consistency of the in- 
situ measurements at all stations, years with >20 days of missing data 
were excluded from this study (Table 1). 

2.3. Methods 

The annual number of frozen days, annual minimum soil tempera
ture, and annual number of FT cycles are the three soil metrics used in 
this study to represent soil processes in the cold season. These variables 
are selected due to their importance for ecological and hydrological 
processes (Kreyling et al., 2012; Repo et al., 2014). All metrics of interest 
are calculated on a cell-by-cell basis using the 6 AM 3-hourly tempera
ture in the top 10 cm of soil. The 6 AM period was selected for analysis 
because the top soil layer undergoes nighttime cooling prior to daytime 
warming and thus is cold enough to represent freezing processes in soil. 
It is also coincident with the Soil Moisture Active Passive (SMAP) 
descending overpass which allows the comparison between the two 
datasets in future work. Hereafter, the term soil temperature refers to the 
6 AM soil temperature for the top soil layer. The use of the 6 AM period 
does not identify diurnal FT cycles. Thus, the study’s FT cycles counts 
are lower than if diurnal cycles were counted. Water years (WYs), 
October 1 to September 30, are used in this study to obtain the annual 
soil metrics. 

Freezing temperature (Tfrz), used as the threshold between frozen 
and thawed soil states, was set to 0.01 ◦C, which is the temperature 
utilized by Noah-MP model in its freezing scheme. Detecting freeze state 

based on any Tfrz <0.01 ◦C noticeably changes the number of frozen days 
and FT cycles of Noah-MP soil layer. In contrast, Noah2.7.1 and JULES 
set Tfrz to 0 ◦C. Our preliminary tests indicated that Noah2.7.1 and 
JULES freeze state estimates do not change when Tfrz = 0.01 ◦C (Figs. S-1 
and S-2). 

The annual number of frozen days (FD) is total number of days in 
each WY when the soil temperature was below the freezing temperature. 

FD =
∑n

i=1

{
1 if Ti < Tfrz
0 if Ti⩾Tfrz

}

where Ti is soil temperature on day i and n is the number of days for each 
WY. 

The annual minimum soil temperature was determined for each WY 
and cell. The annual number of FT cycles is the number of times when 
the soil temperature cools from a temperature above the freezing tem
perature to below the freezing temperature. Therefore, for each cell: 

FT =
∑n

i=2

{
1 if Ti < Tfrz ∧ Ti− 1 ≥ Tfrz
0 else

}

where Ti and Ti-1 are soil temperature at day i and i-1, respectively. 
The annual ensemble mean for each year is the average of the vari

able of interest for the nine ensemble members on a cell-by-cell basis. 
The overall mean was calculated by averaging of the annual ensemble 
means over the WYs 2010–2016. Because SEUP data is only available 
until 30 May 2017, this partial year was excluded from mean and 
standard deviation analysis to eliminate its potential impacts on the 
statistics of high latitude regions. The deviation from the mean for each 
year is the annual ensemble mean for that year minus overall mean. 
Similarly, the annual standard deviation was calculated over the nine 
ensemble members for each WY. These three statistics are used to assess 
overall variability of soil characteristics over the ensemble. 

The snow class-averaged soil variable is the average of the soil var
iable of interest over the entire area with a specific snow regime, 
calculated separately for each ensemble member and year. This variable 
was employed to investigate the uncertainty by different snow classes. 

Table 1 
Details of the 15 sites, chosen for comparison against SEUP simulations.  

Station Name Latitude 
(◦N) 

Longitude 
(◦W) 

State Network Elevation 
(m) 

Data record used in this 
study (WY) 

Excluded 
years 

Snow class Snow data 
availability 

1.Granite Creek 63.95 145.4 AK SNOTEL 377.95 2010–2017 – Tundra Yes 
2.Upper Nome 

Creek 
42.65 146.6 AK SNOTEL 768.1 2010–2017 – Tundra Yes 

3.Arapaho 
Ridge 

40.35 106.38 CO SNOTEL 3342.7 2010–2017 2011 Boreal Forest Yes 

4.Gobblers 
Knob 

66.75 150.67 AK SNOTEL 618.744 2010–2017 2012 Boreal Forest Yes 

5.Mundare 
AGDM 

53.56 112.29 Canada, 
Alberta 

ACIS 690 2010–2017 – Prairie Yes 

6.Streeter 46.72 99.46 ND NDAWN 180.59 2015–2017 – Prairie No 
7.South Fork 42.426 93.417 IA   2016–2017 – Prairie No 
8.Hubbard 

Brook 
43.93 71.72 NH SCAN 451.1 2010–2017 2013, 2014 Montane 

Forest 
Yes 

9.Beaver Dams 39.14 111.56 UT SNOTEL 2435.35 2010–2017 – Montane 
Forest 

Yes 

10.Crater 
Meadows 

46.56 115.29 ID SNOTEL 1816.6 2012–2017 – Montane 
Forest 

Yes 

11.MF 
Nooksack 

48.82 121.93 WA SNOTEL 1514.86 2013–2017 – Maritime Yes 

12.Cayuse Pass 46.87 125.53 WA SNOTEL 1597.15 2012–2017 2016 Maritime Yes 
13.Lind 47 118.57 WA SCAN 499.87 2010–2017 – Ephemeral No 
14.St Joseph’s 41.449 85.011 IN   2016–2017 – Ephemeral No 
15.Bushland 35.17 102.1 TX SCAN 1164.34 2010–2017 – Ephemeral No  
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3. Results 

3.1. Ensemble mean and standard deviation 

3.1.1. Annual number of frozen days 
Fig. 2-A shows the ensemble mean of the annual number of frozen 

days generally increases with latitude. Not surprisingly, latitude is a key 
underlying factor in SEUP estimations of frozen days. However, latitude 
is not the only driver. The pattern of the ensemble mean at the regions 
with latitude >50◦N suggests that there are other additional factors 
impacting this pattern. The Rocky Mountain region can experience up to 
260 frozen days annually while other regions at similar latitudes usually 
have <160 frozen days. The northern Pacific coastline’s ensemble mean, 
there are fewer than 120 frozen days, and the USA west coast’s ensemble 
mean, frozen days <40 days, are noticeably fewer than other regions at 
the same latitude. 

Figs. 2-B to 2-H display annual differences from the overall ensemble 
mean of frozen days. Deviations from the average have considerable 
spatial coherence particularly in the central USA. The Northern Pacific 
coastline has considerable year-to-year variability. High interannual 
variations also occur around the Great Lakes and the northeast of the 
USA. The southern Canadian prairies (near the USA and Canadian 
border) experienced many more frozen days in 2013 and 2014. For other 
years, that region is fairly consistent. 

Fig. 2-I presents the average variability across the model ensemble 
quantified by the standard deviation of the annual number of frozen 
days. Over much of the study domain the variations among the ensemble 
members are typically on the order of one month. In contrast, there is 
considerably more. 

disagreement in the northern Pacific coastline, the northern Rocky 
Mountains, and the prairie regions of Alaska. In the Northern Pacific 
coastline, the standard deviation can be as high as 150 days. Coefficients 
of variation (standard deviation divided by mean) exceed one in this 
region indicating a lack of consensus among the ensemble members for 
this area. The northern Pacific coastline had the highest and lowest 
agreement among ensemble members in 2011 and 2010, respectively 
(Fig. S-3). A localized area in the Rocky Mountains also has a high 
standard deviation (≈60 days) across all the years. However, consid
ering the lengthy frozen period for this region (≈200 days), this high 
standard deviation is less notable than the Pacific regions. In general, the 
variability among the ensemble members is higher for the western re
gions of the USA as compared with the rest of the study domain. 

3.1.2. Annual minimum temperature 
Fig. 3-A illustrates the overall ensemble mean of annual minimum 

temperature, averaged over the seven WYs (2010–2016). In a typical 
year, the temperature of the top soil layer never freezes in the southern 
coastal regions of North America (latitude<35◦N), as well as the west 
coast of the USA (latitude<40◦N). The coldest minimum temperatures, 
Tmin colder than − 15 ◦C, are found primarily in the northern Great 
Plains, the Arctic regions above 66.5◦N and along the Brooks Range in 
Alaska. 

Figs. 3-B to 3-H show the deviation of annual ensemble mean mini
mum temperature from the overall ensemble mean of the minimum 
temperature. Comparing these figures reveals that most of the study 
domain experiences at least one year that is at least 2 ◦C colder or 
warmer than usual. There are a few regions including California that 
have low interannual variability of annual minimum temperature. The 

Fig. 2. Spatial distribution of overall ensemble mean (A), differences between annual ensemble mean and overall ensemble mean (B–H), and average standard 
deviation (I) of number of frozen days computed using 3-hourly soil temperature at 6 AM over 9 ensemble members for each year from WY 2010–2016. 
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figures also suggest that the spatial extent of the areas with a very low 
minimum soil temperature is not consistent across years. There are 
years, such as 2014, in which an extended area across the northern Great 
Plains and Arctic regions where Tmin is colder than − 15 ◦C. For other 
years, such as 2011, only a small portion of these regions experienced 
very low minimum temperatures. In fact, minimum temperatures in 
most of the north were between − 5 ◦C and − 10 ◦C. 

Fig. 3-I shows the average standard deviation of annual minimum 
temperature across nine ensemble members. For much of the CONUS, 
the variability is <3 ◦C. Higher variability in minimum soil temperature 
over the ensemble members occurs north of 50◦N. The maximum vari
ability, larger than 6 ◦C, is found in these high latitude regions but the 
locations and the spatial extent of these extremes vary among the years 
(Fig. S-4). For example, there was large disagreement among the 
ensemble members’ annual minimum temperature for much of Cana
dian Prairies in 2010 (Fig. S-4). For other years, very limited areas in this 
region experienced such a high variability. For regions south of 50◦N, 
the highest standard deviation occurs in the southern Rocky Mountains, 
regions around the Great Lakes and the northeastern USA. Disagreement 
among ensemble members also occurred in an extended region in 2011 
over the central parts of the USA. 

3.1.3. Annual number of freeze-thaw cycles 
Fig. 4-A shows the overall ensemble mean of the annual number of 

FT cycles. Regions with latitude between 32.5◦N and 50◦N typically 
experience high number of FT cycles (6 to 16 cycles per year). The 
ensemble mean of FT cycles can reach to 18 cycles per year in western 
Nebraska and eastern Colorado. Alaska and other Arctic regions have 
less than six cycles annually with the number of cycles decreasing with 

increasing latitudes. The south and west coast of the USA usually have 
less than two cycles per year. 

Figs. 4-B to 4-H examine the difference between the annual ensemble 
mean of FT cycles and the overall ensemble mean. High latitude regions 
seem to have a consistent pattern across years with a few exceptions. The 
ensemble mean is noticeably different from the overall mean in 2010 
and 2014 for the Hudson Bay’s southeastern region in central Canada. 
Also, in general, there is high interannual variability in the ensemble 
mean of FT cycles for Alaska’s prairie regions for all the years. In mid- 
latitude regions, deviations between 2 and 6 cycles can be found 
around the Great Lakes and the northern Central Lowlands. In most 
years, the areas where FT cycles exceed 12 are limited to the central 
Great Plains. There are few years, including 2012 and 2013, in which 
that area greatly expands. In southern regions, there are large year-to- 
year variation in the northern part of ephemeral regions east of 
100◦W. Other areas of North America are usually relatively consistent 
over years with a few notable exceptions such as the northeastern USA in 
2010 and 2016. 

The average variations of FT cycles across the nine ensemble mem
bers are shown in Fig. 4-I. The poorest agreement among ensemble 
members is found in the Great Plains, northern Pacific coastline, and 
along the Appalachian Mountains, the Sierra Nevada, and the southern 
Cascade Range. A small area in south of 30◦N also has poor agreement 
among the ensemble members on the number of FT cycles. In contrast, 
models agree within one to two cycles in Alaska, as well as the south and 
west coasts of the USA. Two to three cycle variations are typical in the 
mid latitudes. It is evident from Fig. 4 that the highest variability among 
the models, exceeding six cycles, is not necessarily collocated with lo
cations of high FT cycles. There are also regions where the magnitude of 

Fig. 3. Spatial distribution of overall ensemble mean (A), differences between annual ensemble mean and overall ensemble mean (B–H), and average standard 
deviation (I) of minimum soil temperature computed using 3-hourly soil temperature at 6 AM over 9 ensemble members for each year from WY 2010–2016. 
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ensemble variability changes greatly year-to-year (Fig. S-5). For 
example, ensemble members had good agreement around the Lake Su
perior in 2013 and 2015 but strong disagreement in 2010 and 2012. 

3.2. Ensemble variability across snow classes 

3.2.1. Annual number of frozen days 
Fig. 5 shows the distributions of the class-averaged annual number of 

frozen days by snow classes and ensemble members. Each box consists of 
seven points, corresponding to the seven WYs (2010–2016), each of 
which represents the annual number of frozen days averaged over the 
given snow class. In each box, the black line indicates median. Top and 
bottom of each box are bounded to the 75th (Q3) and 25th (Q1) per
centiles. Outliers are defined as points further than 1.5 interquartile 
range above Q3 or below Q1 

There are distinct differences in the annual number of frozen days 
across snow classes. Tundra and ephemeral classes have the highest 
(248.6 days) and the lowest (41.4 days) median of annual number of 
frozen days, respectively. There are also notable differences among 
models. Noah2.7.1 members’ simulations yield the fewest median of 
class-averaged annual number of frozen days for all the snow classes 
except maritime. While the Noah-MP and JULES estimations of the 
annual number of frozen days are very similar at almost all snow classes, 
Noah-MP estimates shorter frozen period at maritime. The forcing 
datasets that drive a common LSM do not have conspicuous differences. 
It appears that differences among LSM model physics cause a larger 
discrepancy in soil frozen days than differences in the meteorological 
forcing datasets. 

Fig. 4. Spatial distribution of overall ensemble mean (A), differences between annual ensemble mean and overall ensemble mean (B–H), and average standard 
deviation (I) of number of FT cycles computed using 3-hourly soil temperature at 6 AM over 9 ensemble members for each year from WY 2010–2016. 

Fig. 5. Distribution of annual number of frozen days (FD), averaged over 
different snow classes. Each box-plot consists of seven points, each of them 
representing the annual number frozen days at a WY (2010–2016), averaged 
over a snow class. The black line indicates FD median; top and bottom of box 
are the 75th and 25th percentiles, and top and bottom of whiskers represent the 
maximum and minimum FD without outliers. Outliers are shown as black dots. 
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Including the outliers, tundra regions experience the least year-to- 
year variation in annual number of frozen days across all the 
ensemble members. The difference between the largest and smallest 
annual number of frozen days (range) is typically 9.8 days for this class. 
Maritime regions have the most year-to-year variation, typically 47.6 
days, in the annual number of frozen days. The interannual variability of 
boreal forest (12.3 days) and ephemeral regions (17.1 days) are almost 
similar. Within a snow class, there is not a notable difference in year-to- 
year variation across the ensemble members. 

3.2.2. Annual minimum temperature 
The distributions of the class-averaged, annual minimum tempera

ture vary notably among ensemble members and snow classes (Fig. 6). 
The warmest simulated minimum temperatures occur in ephemeral and 
maritime regions. While tundra regions have the longest frozen period, 
their minimum temperatures are not cooler than several other classes. 
The annual minimum temperatures estimated by the Noah2.7.1 are 
cooler than the corresponding values of the other members across all 
snow classes, except ephemeral. Ephemeral regions are noted for the 
consistency in minimum temperature estimates across the ensemble. 
The Noah-MP’s annual minimum temperatures are warmer than 
JULES’s in some classes such as boreal forest, maritime and montane 
forest while they are colder in tundra. 

Differences in annual minimum temperature across the forcing 
datasets were evident but differed by snow class. The warmest and 
coldest values are estimated by MERRA2 and ECMWF, respectively, in 
tundra and boreal forest. In contrast, MERRA2 has the coldest minimum 
temperature in the maritime and ephemeral classes and there is not a 
notable difference between ECMWF’s and GDAS’s minimum tempera
tures. The montane forest and prairie have the least and greatest average 
year-to-year variation of annual minimum temperature, respectively. 
The average year-to-year variations are similar in other regions (range 
from ≈ 3 ◦C to 3.8 ◦C) but can differ by ensemble member. For example, 
all ensemble members within the ephemeral class have a similar varia
tion of annual minimum temperature (≈ 3 ◦C). Whereas, year-to-year 
variations in maritime regions range from 2.9 ◦C for Noah-MP to 
5.1 ◦C for Noah2.7.1. 

The differences in the annual minimum temperature due to forcing 
datasets when driven with a common LSM are smaller than differences 
among the LSMs when driven with common forcing data. Therefore, it 
can be concluded that the model physics in LSMs, rather than forcing 

data, resulted in the greater variability in both modeled minimum 
temperature and frozen days. 

3.2.3. Annual number of freeze-thaw cycles 
The class-averaged, annual number of FT cycles for the ensemble 

members across snow classes show different patterns than the annual 
number of frozen days and minimum temperature (Fig. 7). Prairie re
gions experience the most FT cycles annually (typically 9 cycles). The 
fewest FT cycles are found in the cold tundra and boreal forest regions 
(1.2 and 1.1 cycles, respectively). A striking difference in FT cycles is 
evident among the models. Noah2.7.1 and Noah-MP members simulate 
the lowest and highest median number of freeze thaw cycles, respec
tively, in all classes except maritime. In contrast, there is not a consistent 
pattern in FT cycle distributions due to their forcing dataset. In the 
prairie and ephemeral classes, MERRA2 members estimate the most FT 
cycles, but they have slightly fewer cycles than ECMWF and GDAS 
members in tundra and boreal forest classes. While LSMs are the main 
source of FT cycles variability for all snow classes, in some classes such 
as prairie, cycles are also sensitive to the forcing data. 

Including the outliers, all of the ensemble members across all snow 
classes show high year-to-year variation in the FT cycles counts. If the 
outliers are excluded, the highest year-to-year variations in the class- 
averaged annual number of FT cycles are found in the prairie class. In 
the maritime region, Noah-MP LSM yields a large spread over the seven 
WYs with Noah-MP-MERRA2 having large interannual variability of 
about 3.7 FT cycles. 

3.3. SEUP ensemble and in-situ observations 

To investigate the relationship between the SEUP ensemble simula
tions and the in-situ observations, the three variables of interest were 
calculated using the SEUP output and the in-situ data at 15 sites. While 
the spatial representativeness discrepancy between 5 km simulations 
and point observations impacts the uncertainty of these comparison, 
here the results are reported assuming that the study sites are spatially 
representative of their surroundings. Table 2, Summary of annual 
number of frozen days, annual minimum temperature and annual 
number of FT cycles based on in-situ observations, averaged over WYs 
2010–2017 at the 15 studied sites. 

The 15 study sites were chosen from locations in all snow regimes 
across the North America (Fig. 1). The observed number of frozen days is 
typically <40 days per year in the montane forest, maritime and 
ephemeral sites. The sites located in tundra, boreal forest and prairie 
routinely have >110 frozen days although South Fork, IA (#7) experi
ences shorter frozen period (<80 days) generally. The minimum top- 
layer soil temperature observed across all the studied sites is generally 
warmer than − 9 ◦C with a few exceptions. In Upper Nome Creek, AK 
(#2), the minimum temperature was − 11.1 ◦C in 2013. The coldest 
minimum top-layer soil in Mundare AGDM, Canada, Alberta (#5) was 
− 13.5 ◦C in 2010. The soils cooled to − 12.1 ◦C and − 13.7 ◦C in Lind, 
WA (#13), in 2010 and 2014, respectively. Among all the sites, Gobblers 
Knob, AK (#4) experiences the coldest minimum top-layer soil, 
frequently less than − 12 ◦C. All sites except Cayuse Pass, WA (#12) 
experienced at least one year when annual number of FT cycles exceeded 
zero. Most sites had less than five FT cycles annually. However, there are 
sites that underwent more than five freeze-thaw cycles for some years. 
Southern sites Bushland, TX (#15), Mundare AGDM, Canada, Alberta 
(#5), experienced 11 cycles in 2014 and more than eight cycles in two 
years, respectively. Table 2 summarizes the observed three soil states, 
averaged for the study period by site. WY 2017 was included in this 
section. Although it is a partial year, the observations at all of the 15 sites 
indicate that soil was well thawed by the end of May 2017 and no 
freezing events occurred afterward. 

3.3.1. Annual number of frozen days 
Fig. 8 compares the observed and estimated annual number of frozen 

Fig. 6. Distribution of annual minimum temperature, averaged over different 
snow classes. Each box-plot consists of seven points each of them representing 
the annual minimum temperature at a WY (2010–2016), averaged over a snow 
class. The black line indicates median; top and bottom of box are the 75th and 
25th percentiles, and top and bottom of whiskers represent the maximum and 
minimum Tmin without outliers. Outliers are shown as black dots. 
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days at the in-situ locations by year. The SEUP ensemble members 
showed conspicuous biases in annual number of frozen days. While 
SEUP members generally overestimated the annual number of frozen 
days, there are relatively good agreements at the Alaskan sites. More
over, at Streeter, ND (#6), the number of frozen days simulated by the 
ensemble members closely followed the observation driven annual 
number of frozen days consistently over all period of the two winters and 
South Fork, IA (#7), had good agreement in WY 2017. 

While in most sites, low variability in the number of frozen days can 
be seen over years, Arapaho Ridge, CO (#3) had considerable year-to- 
year variability. At this site, the SEUP models agreed better with ob
servations for years with the longest frozen period, but had a high bias 
for the years with fewer frozen days. Also, the observations had higher 
year-to-year differences in the number of frozen days than the models. 
The SEUP members were not able to discern a year with fewer frozen 
days from one with a longer frozen period. For example, at Mundare 
AGDM, Canada, Alberta (#5) where the observed number of frozen days 
ranged from 84 days to 134 days over the seven WYs, the SEUP simu
lated frozen days range was nearly fixed (approximately 130 to 180 
days) across the years. 

There are also sites that did not generally freeze, yet the ensemble 
members estimated high numbers of frozen days. For example, Hubbard 
Brook, NH (#8) had no observed frozen days in five years, but the SEUP 
members simulated between 88 and 171 frozen days for those years. 

3.3.2. Annual minimum temperature 
Fig. 9 shows the observed and estimated annual minimum temper

ature for the 15 studied sites by year. The SEUP simulated annual 
minimum temperatures are much colder than was observed at all stud
ied sites except Lind, WA (#13) and Gobblers Knob, AK (#4). The 
coldest minimum temperature, -31.8 ◦C, was simulated at Granite Creek, 
AK (#1) when observed minium temperature was − 7.2 ◦C. The 

Fig. 7. Distribution of annual number of FT cycles, averaged over different snow classes. Each box-plot consists of seven points, each of them representing the annual 
number FT cycles at a WY (2010–2016), averaged over a snow class. The black line indicates FT median; top and bottom of box are the 75th and 25th percentiles, and 
top and bottom of whiskers represent the maximum and minimum FT without outliers. Outliers are shown as black dots. 

Table 2 
Summary of annual number of frozen days, annual minimum temperature and 
annual number of FT cycles based on in-situ observations, averaged over WYs 
2010–2017 at the 15 studied sites.  

Station Name Annual number of 
frozen soil days 
(days) 

Annual minimum 
temperature (◦C) 

Annual number of 
FT cycles (cycles) 

1.Granite 
Creek 

201 − 5.7 2 

2.Upper 
Nome 
Creek 

224 − 5.8 2 

1.Arapaho 
Ridge 

130 − 1.1 2 

4.Gobblers 
Knob 

221 − 12.7 2 

5.Mundare 
AGDM 

110 − 7.9 4 

6.Streeter 119 − 6 3 
7.South Fork 60 − 5.2 2 
8.Hubbard 

Brook 
≤1 0.4 ≤1 

9.Beaver 
Dams 

≤1 0.1 ≤1 

10.Crater 
Meadows 

35 − 0.2 2 

11.MF 
Nooksack 

≤1 0.2 ≤1 

12.Cayuse 
Pass 

0 0.24 0 

13.Lind 28 − 7.2 4 
14.St 

Joseph’s 
24 − 1.4 3 

15.Bushland 6 − 0.6 3  
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ensemble’s underestimations of annual minimum temperature are also 
noticeable for sites where the minimum soil temperature fluctuates 
around 0 ◦C. At these sites, the soil never cooled below − 0.7 ◦C, but the 

modeled minimum temperature was as low as − 15 ◦C. 
At most sites, there was less than a 5 ◦C year-to-year difference in the 

observed annual minimum temperature. Among all of them, montane 

Fig. 8. The observation based annual number of frozen days (y axis) versus the SEUP ensemble annual number of frozen days (x axis).  

Fig. 9. The observation based annual minimum temperature (y axis) versus the SEUP ensemble annual minimum temperature (x axis).  
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forest and maritime sites had the least variation in the annual minimum 
temperature over years (<2 ◦C). In contrast, the observed minimum 
temperature at Upper Nome creek, AK (#2), Gobblers Knob, AK (#4), 
Mundare AGDM, Canada, Alberta (#5) and Lind, WA (#13) had the 
highest year-to-year variation (≈ 10 ◦C). At these sites, the SEUP 
ensemble did capture the variations although they still underestimated 
the minimum temperature. Gobblers Knob, AK (#4) agreed best with the 
warmest observed temperature. Lind, WA (#13), had the best agreement 
for the coldest years. 

3.3.3. Annual number of freeze-thaw cycles 
Fig. 10 depicts the in-situ and SEUP driven annual number of freeze- 

thaw cycles for the study sites by year. The SEUP members generally 
overestimate the number of FT cycles. At most of the studied sites, none 
of the SEUP estimations of FT cycles match the observed FT cycles. Sites 
such as Hubbard Brook, NH (#8), and Beaver Dams, UT (#9) that usu
ally have no FT cycles, have modeled estimates as high as 15 cycles. 
Although year-to-year variation in the observed number of FT cycles is 
evident at some sites, the SEUP estimated annual number of FT cycles 
does not capture these year-to-year variations at any site. For example, 
the ensemble members’ range is nearly fixed for all the years at Granite 
Creek, AK (#1), and Arapaho Ridge, CO (#3). 

In summary, the SEUP ensemble members’ ability to capture the 
three variables of interest, annual number of frozen days, annual mini
mum temperature and annual number of FT cycles, is generally poor 
over the studied sites. Even for sites such as Streeter, ND (#6), where the 
SEUP members provide a reasonable estimation of annual number of 
frozen days, there are considerable biases in the annual FT cycles and 
minimum temperature estimates. 

3.3.4. Temporal evolution of soil temperature 
This section investigates how the snowpack contributes to the soil 

temperature temporal evolution throughout the course of winter in the 
SEUP simulations. The observed and simulated SWE or snow depth, air 
and soil temperatures were examined for the 10 studied sites where all 

soil, air and snow observations are available (Table 1). The WYs 2016 
and 2017 results for four sites, Arapaho Ridge, CO (#3), Beaver Dams, 
UT (#9), Granite Creek, AK (#1), Mundare AGDM, Canada, Alberta 
(#5), and MF Nooksack, WA (#11) are provided here for the illustration 
purposes. 

Figs. 11–14 show that the observed air temperature generally agrees 
better with the SEUP ensemble than the soil temperature. The modeled 
and observed soil temperatures also generally agree prior to the onset of 
snow. The observed soil temperatures reach a steady state value near 
zero when the snow arrives. The modeled snow accumulation generally 
starts later then observed. As a result, the SEUP soil layer is not insulated 
by the snow till later in the winter. During this period, the modeled soil 
temperature continues to cool, and reaches its minimum when the 
modeled snow begins to accumulate. 

The magnitude of the day-to-day fluctuations in modeled winter soil 
temperature is considerably larger than observations. The observed data 
have relatively smooth fluctuations as compared to the larger, abrupt 
changes in the SEUP soil temperatures. The differences in the ensemble 
members’ soil temperatures, in early winter, before a snow layer is 
established, are more evident among the models than forcing datasets. 
For example, Noah2.7.1 and JULES’ soil temperatures at Arapaho Ridge, 
CO (#3) dropped sharply below freezing in November while Noah-MP’s 
soil temperatures had a smoother transition and less dramatic decrease 
(Fig. 11). After the modeled snowpack accumulates, the ensemble 
members with higher SWE values have lower day-to-day variations in 
soil temperature. For instance, the Noah-MP members have higher SWE 
at Beaver Dams, UT (#9) for all forcing datasets (Fig. 12). The Noah-MP 
members’ soil temperature magnitude and fluctuations were in much 
better agreement with observations than the other models. 

Although snow is a key contributor to soil thermal processes, it 
should be noted that the variabilities in SWE alone cannot explain the 
variabilities among the models and the errors in comparison with the 
observations. For example, soil temperature and SWE plots at Granite 
Creek, AK (#1) (Fig. 13) reveal that even when the models agree on SWE 
estimation their simulated soil temperatures could evolve differently. 

Fig. 10. The observation based annual number of FT cycles (y axis) versus the SEUP annual number of FT cycles (x axis).  
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For example, all the GDAS SWE estimates were closely followed 
observed SWE at 2017, yet the models behaved differently in estimating 
soil temperature. Comparing to Noah-MP, sharper drops and higher 
variations can be found in soil temperature of JULES and Noah2.7.1 
even in the presence of snow which resulted in colder soil temperature 
and thus larger errors. Mundare AGDM, Canada, Alberta (#5) is another 
example confirming the possible contribution of other factors in addi
tion to SWE and snow depth to the soil thermal processes (Fig. 14). At 
this site, Noah2.7.1 simulated higher snow depth than JULES, Noah-MP 
and observations but even more snow was not able to prevent soil layer 
from cooling down and its soil layer still had colder soil temperature 
through the course of winter. 

Soil temperatures and snow plots also show that the timing of snow 
ablation and the rate of snow melt differs among the ensemble members 
and appears to impact spring soil warming. SEUP’s modeled snowpacks 
generally melt and disappear sooner than the observed snow layer, both 
decreasing the frozen period and warming the modeled soil temperature 
at the end of the cold season. For example, the Noah2.7.1 snowpack 
melted sooner at Arapaho Ridge, CO (#3), which resulted in an abbre
viated frozen periods for Noah2.7.1 members (Fig. 11). 

4. Discussion 

4.1. Ensemble variability 

Our study agreed with earlier findings that the ensemble members’ 
simulated soil metrics can vary widely, but that the magnitude of this 
variability is not consistent across North America. The standard devia
tion of annual number of frozen days, annual minimum temperature and 
annual number of FT cycles vary in range of 0–175 days, 0–15 ◦C, and 
0–12 cycles over North America, respectively. Consistent with our 
findings, a wide range of winter soil temperatures simulated by six LSMs 
(Jena Scheme for Biosphere–Atmosphere Coupling in Hamburg 
(JSBACH), Organising Carbon and Hydrology In Dynamic Ecosystems 
(ORCHIDEE), JULES, COUP, HYBRID8, Lund-Potsdam-Jena General 
Ecosystem Simulator (LPJ- GUESS)) was also reported by Ekici et al. 
(2015) across their four alpine, high Arctic, wet polygonal tundra and 
non-permafrost Arctic study sites. The wide ranges of soil metrics among 
the SEUP ensemble over our large study domain with extremely 
different climate and surface characteristics have two implications. 
First, the processes impacting winter soil metrics such as snow accu
mulation and ablation, and heat transfer through soil layer and snow
pack are location-specific. Second, models simulate such dominant 
processes differently due to different representations and equations 

Fig. 11. Observed and SEUP simulated SWE, soil temperature and air temperature at 3. Arapaho Ridge (boreal forest, CO) during WYs 2016 and 2017.  
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employed by models. 
We found that the regions having the greatest disagreement among 

the ensemble members depend on the specific soil metrics. Disagree
ment over one soil metric doesn’t necessarily lead to variance in other 
soil metrics. The northern Pacific coastline is the only region where the 
models are not relatively consistent in both the length of frozen period 
and the number of FT cycles. Kim et al. (2021) found that this region also 
experiences the largest spread in ensemble mean SWE. They concluded 
that the differences in rain–snow partitioning schemes of the land sur
face models could partially contribute to the large spread in mean SWE 
at the northern pacific coastline. The variability in the amount of snow 
over the ground during the accumulation period can have serious im
pacts on insulating the ground and thus on FT processes. Comparing our 
results and Kim et al. (2021) revealed that the large spread in the 
simulated soil metrics and the mean SWE are not necessarily found at the 
same areas. This means that the ensemble variabilities in annual mean 
SWE do not entirely explain the ensemble variabilities in winter soil 
metrics. Our results suggest that the uncertainty in snow characteristics 
at the beginning of winter may be a more important indicator of the soil 
simulation performance over the entire winter season rather than the 
seasonal mean or maximum SWE. While a recent study showed that 
atmospheric forcings (e.g., precipitation) led the largest uncertainties in 
SWE estimations (Cho et al., 2022), we found the variabilities in winter 

soil metrics appear to be more rooted in the differences among the LSMs’ 
model physics rather than forcing datasets. This indicates that efforts to 
improve models’ estimation of winter soil characteristics should first 
focus on the LSMs’ physics and model parameterizations. 

Regional differences in the ensemble mean of annual number of 
frozen days across snow classes can partially be explained by latitude 
and air temperature. The soil layer at northern tundra and boreal forest 
regions stays frozen for a longer time because air temperature in these 
regions is frequently below freezing (Fig. S-6). In contrast, the lower 
latitude, ephemeral regions experience few days with air temperature 
below freezing (Fig. S-6), which results in an abbreviated frozen period 
for the soil layer. In the mid latitude regions, including maritime, prairie 
and montane forest classes, other factors than air temperature such as 
the regional snowpack magnitude, timing, and duration could be more 
important controls for number of frozen days. Maritime regions have the 
deepest snowpack over North America (Kim et al., 2021) as well as a 
persistent snowpack (Fig. S-9). A deep and persistent snowpack would 
prevent the soil layer from freezing and reduce the number of frozen 
days in maritime regions as compared to prairie and montane forest 
areas. Across all the snow classes except maritime, the Noah2.7.1’s soil 
layer has the shorter frozen period. Based on the soil temperature time 
series at the 15 study sites, a reasonable hypothesis is that the abrupt 
changes in soil temperature of Noah2.7.1 model at the beginning and 

Fig. 12. Observed and SEUP simulated SWE, soil temperature and air temperature at 9. Beaver Dams (montane forest, UT) during WYs 2016 and 2017.  
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end of winter season do not allow the soil layer to stabilize at an 
isothermal state and fluctuate around freezing point. This hypothesis 
could also explain why Noah2.7.1 simulated fewer FT cycles for all snow 
classes. 

The higher ensemble mean annual minimum temperature in mari
time and ephemeral classes are linked to higher minimum air temper
ature at these classes. While tundra regions experience colder minimum 
temperature comparing to prairie (Fig. S-7), there is not much difference 
in the ensemble mean minimum soil temperature of these two classes. In 
prairie regions, the soil layer is not insulated by snow due to a shallower 
snow (Kim et al., 2021) and more snow-free days (Fig. S-9) as compared 
to tundra and boreal forest areas. Annually, there were >30 snow free 
days with air temperature below freezing in prairie regions (Fig. S-9). 
The same conditions can explain the regional differences between boreal 
forest and montane forest. The reason that the coldest minimum tem
perature for all snow classes were simulated by Noah2.7.1 appears to be 
due to its relatively high response in soil temperature to changes in air 
temperature. Although it needs further assessment, Noah2.7.1 may have 
a higher thermal conductivity for its snowpack and soil layer. 

Despite notable difference among maritime, ephemeral and montane 
forest classes’ frozen period, SWE and persistence of snowpack, no sig
nificant differences are evident among their ensemble means of number 
of FT cycles. This interesting result however does not necessarily mean 

that FT processes are similar in these regions. Less snow in ephemeral 
region means that soil has an increased the chance of freezing and 
thawing even in the middle of winter. On the other hand, in maritime 
and montane forest areas, FT cycles appear to occur most frequently 
during the shoulder periods of winter season, before snowpack estab
lishment or during the melt season. 

The quantification of the spatial and temporal variability in simu
lated winter soil characteristics enabled us to identify the regions with 
extreme values, considerable year-to-year variability and variability 
among models. The latter directs the modeling community to specific 
regions where there is a need to better understand the source of vari
ability. The application of modeled winter soil temperature in regions 
having high variability in time or across models should recognize the 
uncertainties in that output and consider using a longer time period or 
an ensemble of models to capture the region’s variability. 

4.2. Factors leading to uncertainties in LSM’s cold soil metrics 

Cold biases in minimum soil temperature and overestimates of the 
number of FT cycles and frozen days were found at almost all of the 15 
studied sites. Also, the ensemble simulations couldn’t reflect the 
observed year-to-year variation in the soil metrics. While, the simulated 
frozen period is on average 20 days longer than observations in northern 

Fig. 13. Observed and SEUP simulated SWE, soil temperature and air temperature at 1. Granite Creek (tundra, AK) during WYs 2016 and 2017.  
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latitude tundra, boreal forest and prairie sites, it is generally >110 days 
longer in the mid-latitude montane forest sites. In the maritime and 
ephemeral sites, 50 more frozen days were simulated by models on 
average. The ensemble mean minimum soil temperature is generally 
about 6 ◦C colder than observation in all the sites except the maritime 
and prairie sites. Overall, the lowest (≈2 ◦C) and highest differences 
(≈8 ◦C) between the observed and ensemble mean minimum soil tem
perature can be found in maritime and prairie sites respectively. The 
overestimation of FT cycles is more significant in prairie and montane 
forest sites (≈ 6 more simulated cycles on average) compared to that in 
maritime and northern tundra and boreal forest sites (≈ 2 more simu
lated cycles). These results are consistent with previous studies in which 
cold biases in soil temperature modeled by Noah model (Godfrey and 
Stensrud, 2008; Xia et al., 2013), Noah-MP (Li et al., 2021) and JULES 
(Ekici et al., 2015) were noted. Warm biases were also found in the early 
spring period (Xia et al., 2011) and warm part of day (Godfrey and 
Stensrud, 2008). 

Similar to our study, these previous studies also relied on comparing 
point scale observations with gridded simulations to assess the perfor
mance of the models. It is important to acknowledge the potential spatial 
representativeness issues that may be raised in such comparisons. 
Despite the relatively high resolution of the SEUP ensemble, full 

representation of local heterogeneity for microphysical features and soil 
winter processes is not possible over a 5-km grid. Thus, differences in the 
scale between model grid cells and an in-situ station likely account for 
some of the biases. This is an inevitable limitation when comparing 
model simulations against point observations. However, the collective 
use of comparisons to identify consistent differences between the 
modeled output and observations is still valuable. The other limitation 
here that may contribute to some of the high biases is the binary method 
with a fixed threshold (0.01 ◦C) used in this study to differentiate be
tween frozen and thawed states of soil. 

Various factors may contribute to the errors in simulated cold season 
soil metrics by LSMs. Previous studies found that errors in the snow 
simulations are the primary control on the ground temperature esti
mates (Gubler et al., 2013; Ekici et al., 2015; Wang et al., 2016; Li et al., 
2021), which are supported by our findings. One of the critical prop
erties of snow that modulates winter soil temperature is snow’s thermo- 
insulation. Our results suggest that there are errors associated with the 
rate of accumulation, timing, duration, snow depth and SWE simulated 
by the SEUP ensemble members which impact the snow insulating 
property and, consequently, the soil temperature. The comparison of the 
in-situ and the SEUP estimates of snow depth revealed that snow depth 
was generally underestimated by the SEUP ensemble members at the 

Fig. 14. Observed and SEUP simulated snow depth, soil temperature and air temperature at 5. Mundare AGDM (prairie, Canada, Alberta) during WYs 2016 
and 2017. 
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beginning of winter which could result in limited insulation. Using snow 
depth measurements, Sharratt et al. (1992) found that 15 to 42.5 cm of 
snow depth was the threshold for which soil temperature fluctuations 
became independent of air temperature fluctuations. While the damp
ening of in-situ soil temperature fluctuations observed at our 15 sites 
was consistent with Sharratt et al.’s finding, the modeled time series of 
the SEUP snow depth, soil and air temperatures showed otherwise. In 
SEUP simulations with deeper snowpacks, the soil layer is still respon
sive to air temperature. This points to a potential overestimate of snow 
thermal conductivity. Accurately estimating snow thermal properties 
such as thermal conductivity and heat capacity is challenging but 
important to estimate snow insulation (Cook et al., 2008; Gouttevin 
et al., 2012; Wang et al., 2016). The three LSMs used in this study, 
JULES, Noah and Noah-MP, simulate snow thermal conductivity as a 
function of snow density. Therefore, any error in snow density simula
tions impacts heat transfer through the snowpack and has consequences 
for soil temperature. Also, the lack of depth hoar in the land surface 
models could contribute to soil temperature errors. In the non- 
permafrost regions, Zhang et al. (1996) found that an increase in the 
depth hoar fraction from 0.0 to 0.6 can lead to an 8.4 ◦C increase in the 
daily ground surface temperature. 

While not specifically examined in this study, albedo is another snow 
property that has a pronounced impact on soil thermal budget (Zhang, 
2005). If albedo is overestimated, less solar energy is available for the 
snowpack-soil system, which could lead to cold biases in soil tempera
ture estimates. Previous studies showed that there is a general tendency 
in land surface models, including Noah and Noah-MP, to overestimate 
snow albedo (Roesch, 2006; Chen et al., 2014; He et al., 2019, Rai et al., 
2019). 

Other potential contributing factors to the errors in winter soil 
temperature simulations are related to the soil layer itself. Underesti
mation of soil moisture and consequently underestimation of soil layer 
volumetric heat capacity could contribute to soil temperature underes
timation (Godfrey and Stensrud, 2008; Chen and Dudhia, 2001). 
Moreover, soil moisture directly alters surface albedo and regulates the 
surface energy balance during snow-free periods of winter (Idso et al., 
1975). Because the surface albedo decreases by up to 50% as soil 
moisture increases (Idso et al., 1975; Wang et al., 2005; Liu et al., 2008; 
Guan et al., 2009), the underestimation of soil moisture could lead to a 
higher surface albedo, reduced net solar radiation and a colder soil 
temperature. In general, a soil moisture error of 0.1 m3/m3 may lead to 
an error of >1.6 C for the maximum or minimum daily soil temperature 
(Godfrey and Stensrud, 2008). 

Misrepresentation of soil thermal properties such as thermal con
ductivity are also potential sources of uncertainty in soil temperature 
estimations (Peters-Lidard et al., 1998; Mölders and Walsh, 2004; 
Lawrence and Slater, 2008; Dai et al., 2019; Zhang et al., 2021). LSMs 
rely on thermal conductivity of mineral components as well as thermal 
conductivity of water, ice, and air to estimate soil thermal conductivity. 
The mineral thermal conductivity could be computed based upon clay, 
silt and sand fractions of soil (JULES) or quartz content (Noah, Noah- 
MP) (Dharssi et al., 2009; Peters-Lidard et al., 1998). The Dharssi 
scheme used in JULES model assumed thermal conductivity of silt and 
sand is 1.36 times higher than clay (Dharssi et al., 2009) so any uncer
tainty in the soil texture classification used to parametrize the model 
could propagate to soil heat transfer and temperature simulations. The 
uncertainties in quartz content of Noah and Noah-MP soil layer could 
impact soil thermal conductivity because quartz thermal conductivity is 
almost four times higher than thermal conductivity of other soil com
ponents (Farouki, 1981; Peters-Lidard et al., 1998). The other critical 
component impacting soil thermal conductivity is the ice content of soil. 
Ice has higher thermal conductivity that is almost four time higher than 
liquid water. Thus, overestimating the ice content could result in higher 
thermal conductivity. 

Finally, errors in forcing data such as an underestimate of radiative 
fluxes (Godfrey and Stensrud, 2008; Ekici et al., 2015) and errors in 

surface air temperature (Zhu and Liang, 2005) can result in cold biases 
in soil temperature. According to Cho et al. (2022), ECMWF, GDAS and 
MEERA2 winter air temperatures were colder than air temperatures 
(− 4 ◦C < mean differences) at 68, 86, and 53% of SNOTEL stations over 
the western U.S. for the eight water years from 2010 to 2017. Such cold 
biases could partially contribute to the underestimation of soil temper
ature by the SEUP ensemble members. 

While all models have considerable biases in the annual number of 
frozen days, the annual minimum soil temperature and the annual 
number of FT cycles, comparisons between the temporal evolution of 
soil temperature at the 15 study sites and across models suggests that 
Noah-MP’s soil temperature simulations were the most comparable to 
the observations. Both Noah2.7.1 and JULES had abrupt temperature 
changes and relatively high day-to-day soil temperature fluctuations 
that were rarely seen in the observations. 

5. Summary and conclusion 

Accurate and spatially consistent estimates of winter soil tempera
ture and FT cycles are important for hydrology, geochemistry and 
ecology. In the absence of in-situ networks with spatially and temporally 
consistent observations of soil temperature and the challenges in remote 
sensing of winter soil temperatures, land surface modeling seems to be 
the most promising option for characterizing winter soil temperature 
over large domains. In contrast to previous studies which primarily 
focused on soil temperatures simulated by one LSM over a small region 
with specific topography, land cover or snow characteristics, our study 
employed a nine members ensemble, three land surface models (JULES, 
Noah2.7.1, and Noah-MP) and three forcing datasets (ECMWF, GDAS, 
and MERRA2), over North America for seven winters. The simulations 
were compared to observations from 15 sites covering a wide range of 
snow regimes. The comprehensive assessment done in this study to 
quantify spatial and temporal variability in simulated winter charac
teristics provides valuable insights on the regions with extreme values, 
considerable year-to-year variability and notable disagreement among 
models. It also sheds light on the potential sources of errors in winter soil 
temperature estimates and enables the modeling community to move 
toward a better representation of winter processes in land surface 
models. 

Overall, the uncertainties in winter soil characteristics are more 
rooted in the differences among the LSMs’ than the meteorological 
forcing data across the North America. For almost all the snow classes 
except for maritime class, the shorter frozen period and the least number 
of FT cycles were simulated by Noah2.7.1. The Noah2.7.1 also had the 
lowest annual minimum temperature at all classes expect ephemeral. 

Compared to in-situ observations, large biases were observed in all 
three studied soil characteristics, the annual number of frozen days 
(overestimated by SEUP members), annual minimum temperature 
(underestimated) and the annual number of FT cycles (overestimated). 
The observed and simulated soil temperature evolution during winter 
highlights the importance of snow during accumulation period. In the 
absence of adequate insulation from snowpack, soil responds to air 
temperature fluctuations which could lead to freezing condition. Later, 
when the snowpack establishes on the ground, soil is already frozen and 
stays frozen for the rest of season. Therefore, errors in snowpack simu
lations, accumulation rate, timing and duration of snow appear to play a 
key role in errors of soil winter characteristics. 

The findings of this study point to the need to prioritize modeling 
efforts to improve LSM performance during the onset of winter as 
compared to forcing datasets. Processes that impact snow accumulation 
over ground such partitioning precipitation into rainfall and snowfall as 
well as soil and snow thermal properties that impact heat transfer appear 
to be the important initial targets to diagnose the sources of errors in 
winter soil temperature simulations and improve model performance. 
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Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., Molod, A., Takacs, L., Randles, C.A., 
Darmenov, A., Bosilovich, M.G., Reichle, R., Wargan, K., 2017. The modern-era 
retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 
30 (14), 5419–5454. 

Godfrey, C.M., Stensrud, D.J., 2008. Soil temperature and moisture errors in operational 
Eta Model analyses. J. Hydrometeorol. 9 (3), 367–387. 

Gouttevin, I., Krinner, G., Ciais, P., Polcher, J., Legout, C., 2012. Multi-scale validation of 
a new soil freezing scheme for a land-surface model with physically-based 
hydrology. Cryosphere 6 (2), 407–430. 

Guan, X., Huang, J., Guo, N., Bi, J., Wang, G., 2009. Variability of soil moisture and its 
relationship with surface albedo and soil thermal parameters over the Loess Plateau. 
Adv. Atmos. Sci. 26 (4), 692–700. 

Gubler, S., Endrizzi, S., Gruber, S., Purves, R.S., 2013. Sensitivities and uncertainties of 
modeled ground temperatures in mountain environments. Geosci. Model Dev. 6 (4), 
1319–1336. 

Guo, D., Yang, M., Wang, H., 2011. Characteristics of land surface heat and water 
exchange under different soil freeze/thaw conditions over the central Tibetan 
Plateau. Hydrol. Process. 25 (16), 2531–2541. 

Han, X., Franssen, H.J.H., Montzka, C., Vereecken, H., 2014. Soil moisture and soil 
properties estimation in the Community Land Model with synthetic brightness 
temperature observations. Water Resour. Res. 50 (7), 6081–6105. 

He, C., Chen, F., Barlage, M., Liu, C., Newman, A., Tang, W., Ikeda, K., Rasmussen, R., 
2019. Can convection-permitting modeling provide decent precipitation for offline 
high-resolution snowpack simulations over mountains? J. Geophys. Res.-Atmos. 124 
(23), 12631–12654. 

Idso, S.B., Jackson, R.D., Reginato, R.J., Kimball, B.A., Nakayama, F.S., 1975. The 
dependence of bare soil albedo on soil water content. J. Appl. Meteorol. Climatol. 14 
(1), 109–113. 

Johnston, J.M., Houser, P.R., Maggioni, V., Kim, R.S., Vuyovich, C., 2021. Informing 
Improvements in freeze/thaw state classification using subpixel temperature. IEEE 
Trans. Geosci. Remote Sens.vol. 60, 1–19. 

Jordan, R.E., 1991. A one-dimensional temperature model for a snow cover: technical 
documentation for SNTHERM, p. 89. 

Joseph, G., Henry, H.A., 2008. Soil nitrogen leaching losses in response to freeze–thaw 
cycles and pulsed warming in a temperate old field. Soil Biol. Biochem. 40 (7), 
1947–1953. 

Kane, D.L., 1980. Snowmelt infiltration into seasonally frozen soils. Cold Reg. Sci. 
Technol. 3 (2–3), 153–161. 

Kim, R.S., Kumar, S., Vuyovich, C., Houser, P., Lundquist, J., Mudryk, L., Durand, M., 
Barros, A., Kim, E.J., Forman, B.A., Gutmann, E.D., 2021. Snow Ensemble 
Uncertainty Project (SEUP): quantification of snow water equivalent uncertainty 
across North America via ensemble land surface modeling. Cryosphere 15 (2), 
771–791. 

Koren, V., Schaake, J., Mitchell, K., Duan, Q.Y., Chen, F., Baker, J.M., 1999. 
A parameterization of snowpack and frozen ground intended for NCEP weather and 
climate models. Journal of Geophysical Research: Atmospheres 104 (D16), 
19569–19585. 

Kreyling, J., 2019. The ecological importance of winter in temperate, boreal, and arctic 
ecosystems in times of climate change. In: Progress in Botany, vol. 81. Springer, 
Cham, pp. 377–399. 

Kreyling, J., Beierkuhnlein, C., Pritsch, K., Schloter, M., Jentsch, A., 2008. Recurrent soil 
freeze–thaw cycles enhance grassland productivity. New Phytol. 177 (4), 938–945. 

M. Moradi et al.                                                                                                                                                                                                                                 

https://doi.org/10.1016/j.coldregions.2023.103806
https://doi.org/10.1016/j.coldregions.2023.103806
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0005
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0005
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0005
https://doi.org/10.5194/gmd-4-677-2011
https://doi.org/10.5194/gmd-4-677-2011
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0015
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0015
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0015
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0020
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0020
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0020
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0020
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0025
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0025
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0025
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0030
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0030
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0030
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0030
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0035
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0035
https://doi.org/10.5194/hess-2022-136
https://doi.org/10.5194/hess-2022-136
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0045
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0045
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0045
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0045
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0050
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0050
https://doi.org/10.1007/s003820050276,1999
https://doi.org/10.1007/s003820050276,1999
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0055
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0055
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0055
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0060
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0060
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0065
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0065
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0070
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0070
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0075
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0075
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0075
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0075
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0080
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0080
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0080
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0080
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0085
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0085
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0085
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0085
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0090
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0090
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0090
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0090
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0090
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0095
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0095
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0100
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0100
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0100
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0100
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0105
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0105
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0105
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0105
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0110
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0110
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0115
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0115
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0115
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0120
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0120
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0120
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0125
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0125
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0125
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0130
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0130
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0130
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0135
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0135
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0135
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0140
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0140
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0140
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0140
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0145
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0145
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0145
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0150
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0150
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0150
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0155
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0155
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0160
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0160
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0160
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0165
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0165
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0170
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0170
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0170
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0170
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0170
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0175
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0175
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0175
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0175
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0180
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0180
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0180
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0185
http://refhub.elsevier.com/S0165-232X(23)00036-8/rf0185


Cold Regions Science and Technology 209 (2023) 103806

18
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