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Abstract—The Red River of the North basin (RRB) is vulnerable
to spring snowmelt flooding because of its flat terrain, low per-
meability soils, and the presence of river ice jams resulting from
the river’s northward flow direction. The onset and magnitude of
major flood events in the RRB have been very difficult to forecast,
in part due to limited field observations of snow water equivalent
(SWE). Coarse-resolution (25-km) passive microwave observations
from satellite instruments are well suited for the monitoring of
SWE. Despite routine use in the Earth sciences community to
document the impacts of climate change, the use of passive mi-
crowave observations in operational flood forecasting is rare. This
paper compares daily satellite passive microwave SWE observa-
tions from special sensor microwave/imager (SSM/I) and special
sensor microwave imager/sounder (SSMIS), advanced microwave
scanning radiometer for earth observing system (AMSR-E), and
advanced microwave scanning radiometer 2 (AMSR2) from 2003 to
2016 to modeled output from the SNOw Data Assimilation System
(SNODAS) and Global Snow Monitoring for Climate Research -2
(GlobSnow-2) in the RRB to determine the differences between
the remotely sensed SWE estimates and the model products cur-
rently used in flood forecasting. Results show statistically signifi-
cant differences between the satellite observations and SNODAS
in the northern region of the basin that were not evident in the
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southern region. Satellite estimates of peak SWE in the forecast
subbasins in the northern region were 40–125% higher than the
model results which points to the lack of ground observations used
to constrain the model simulations. This paper recommends that
satellite SWE observations should be considered for improving
operational snowmelt forecasting in the RRB.

Index Terms—Advanced microwave scanning radiometer 2
(AMSR2), advanced microwave scanning radiometer for earth
observing system (AMSR-E), flood forecasting, Global Snow Mon-
itoring for Climate Research (GlobSnow), microwave, SNOw Data
Assimilation System (SNODAS), snowmelt, snow water equivalent
(SWE), special sensor microwave/imager (SSM/I).

I. INTRODUCTION

SNOW water equivalent (SWE) represents an important
portion of the water cycle in the Northern Plains of the

U.S. and is a critical element needed to improve snowmelt flood
forecasts. In the Red River of the North basin (RRB), snowmelt
runoff poses an annual risk of flooding which in 1997 caused a
total of $4 billion in damages in the U.S. [1]. Snowmelt flood
forecasting in the RRB currently relies on SWE information pri-
marily from ground observations and airborne gamma radiation
snow surveys [2]. Unfortunately, because there are not enough
SWE observations to support operational hydrologic modeling
in the RRB [3], forecasting errors can occur [4]. For example, the
National Weather Service (NWS) North Central River Forecast
Center (NCRFC) over-predicted peak snowmelt flow in the RRB
by 70% in 2013 which prompted the construction of emergency
levees at a cost to taxpayers of ∼$2 million.

The NCRFC considers in-situ SWE observations to be an
accurate source of information. However, sparse SWE coverage
and significant field-to-field variability exists among agricul-
tural fields in the RRB which can make ground observations
extremely unreliable at scales relevant to flood forecasting,
unless multiple such observations representative of a hydrologic
forecast basin are available. The NCRFC forecasters, therefore,
consider airborne gamma radiation snow surveys that have foot-
print sizes large enough to account for small-scale variability
(a fight line is approximately 16 km long and 300 m wide
[2], [5]). Unfortunately, high costs associated with airborne
surveys restrict measurements to about two times each winter
season. Moreover, the reliability of airborne SWE measurements
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Fig. 1. Red River of the North basin (RRB), its major cities and associated land cover as determined from the moderate resolution imaging spectroradiometer
(MODIS) Collection 5 global land cover dataset, representing the year 2012. The North Central River Forecast Center (NCRFC) forecast subbasins are shown in
black outlines.

depends on the accurate assessment of soil moisture conditions
prior to an airborne survey [2], [5], [6].

Coarse resolution (∼25 km), near real-time, and satellite pas-
sive microwave SWE observations can provide flood forecasters
with daily snow information anywhere in the RRB. The infor-
mation can be provided day and night and independent of cloud
cover, small-scale snow variability, or hazardous weather condi-
tions. The detailed comparison of advanced microwave scanning
radiometer for earth observing system (AMSR-E) satellite pas-
sive microwave SWE observations to airborne gamma radiation
and ground snow survey SWE observations in the Northern
Great Plains by Tuttle et al. [5] lends confidence to the value
of satellite SWE observations in the RRB. The authors estimate
a bias and RMSD of −3.8 and 34.7 mm between the satellite
passive microwave SWE and ground observations.

Gridded model simulations of SWE from the National
Oceanic and Atmospheric Administration (NOAA), National
Weather Service’s Office of Water Prediction (OWP) [for-
merly National Operational Hydrologic Remote Sensing Center
(NOHRSC)], and SNOw Data Assimilation System (SNODAS)
[7] can also support snowmelt flood forecasts because SNODAS
SWE estimates are provided daily and cover the entire RRB.
In SNODAS, numerical weather prediction output is used to
force a physically based snow model that ingests ground-based,
airborne, and satellite optical snow cover observations in near
real-time. Although satellite passive microwave SWE observa-
tions have strong potential to support snowmelt forecasts [8],
no previous studies have compared satellite passive microwave
SWE observations to current operational model simulations of
SWE for snowmelt forecasts in the RRB. Vuyovich et al. [9]
identified the Northern Great Plains region as having significant
differences between model and satellite SWE products.

This paper compares 13 years of daily satellite passive mi-
crowave SWE observations from special sensor microwave/
imager (SSM/I) and special sensor microwave imager/sounder

(SSMIS), AMSR-E, and advanced microwave scanning ra-
diometer 2 (AMSR2) with model simulations from SNODAS
and Global Snow Monitoring for Climate Research v2.0
(GlobSnow-2) in the RRB to identify differences among the
datasets. We examine differences and provide a discussion about
the datasets’ potential value and limitations for snowmelt and
flood forecasts in the RRB. The following sections will describe
the study location, each of the SWE data sources, and the
methods of comparison, followed by presentation and discussion
of results.

II. STUDY LOCATION AND DATASETS

A. Study Area

The study region is the portion of the RRB for which the North
Central River Forecast Center (NCRFC) provides river forecasts,
which mostly lies within the U.S. (Fig. 1). The 101 500 km2 fore-
cast region comprises 147 individual NCRFC forecast basins.
Basin delineations were obtained from the National Weather
Service (NWS) Integrated Hydrologic Automated Basin Bound-
ary System GIS database.1 The Red River of the North forms
the border between the states of North Dakota and Minnesota. It
drains parts of eastern North Dakota, western central Minnesota,
and a small area of northeastern South Dakota. Fargo and Grand
Forks are the largest cities within the RRB and are located
directly on the banks of the Red River (Fig. 1). The Red River
flows northward, with the outlet of the RRB forecast region at the
United States–Canada border. The land cover of the study area
is predominantly cropland with mixed forest at the eastern edge
of the basin (Fig. 1). The central Red River valley is extremely
flat and the river elevation decreases only 40 m from Fargo to
the Canadian border, or less than 20 cm per km [6]. This and the
presence of snow during spring melt helps to explain why the

1[Online]. Available: https://www.nohrsc.noaa.gov/gisdatasets/
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basin is so vulnerable to snowmelt flooding. The region’s climate
is warm summer continental [10]. Winters are long and cold but
lack the deep snow packs of the western Unites States due to the
continental location of the basin and lack of orographic lift.

B. Datasets

This study compares SWE from operational passive mi-
crowave satellite observations and model output over a 13-year
period (2003–2016). Each winter season is defined as a 34-
week period starting on October 1st and ending in mid-May.
The winter seasons are identified by water year (starting on
October 1st). The corresponding winter season year is labeled
by the end year. For example, the first winter in this study
is 2004, and starts on October 1, 2003 and ends on May 25,
2004. For the satellite datasets, only night time (AMSR-E) and
early morning (SSM/I) observations were used to minimize the
effects of potential snowmelt events on the derived SWE values.
Wet snow resulting from daytime heating erroneously lowers
satellite passive microwave SWE estimates [11]. The temporal
and spatial resolution of each dataset, origin, and corresponding
retrieval algorithm or model simulation are described as follows.

1) AMSR-E and AMSR2: Daily, Level-3 AMSR-E SWE
satellite observations in northern hemisphere equal-area scalable
earth (EASE) grid format at 25-km spatial resolution were
obtained from the National Snow and Ice Data Center (NSIDC)
[12]. The AMSR-E SWE retrieval employs AMSR-E Level-2A
swath brightness temperature (Tb) data [13] as input and the
retrieval algorithm as outlined in Kelly et al. [14]. Daily, Level-3
AMSR2 SWE satellite observations were acquired from Japan’s
Aerospace Exploration Agency (JAXA) and are available for
download through the Globe Portal System.2 These data use the
same retrieval algorithm as the AMSR-E product and are pro-
vided in equidistant cylindrical latitude-longitude grid format at
a spatial resolution of 0.25°. The AMSR-E and AMSR2 retrieval
algorithms use a set of Tb thresholds to detect the presence of
wet and dry snow, as well as medium to deep or shallow snow,
within the field of view [15]. Snow depth of the medium-deep
snow is estimated dynamically for each pixel and separately for
forested and nonforested pixel fractions. Scattering (i.e., the Tb

difference between a low and high frequency band [16]) from
snow in forested areas is detected using the 18-GHz vertical
band as the baseline frequency. In forest-free regions, the longer
wavelength 10-GHz vertical channel is used to increase the
dynamic range and the detection of deep snow packs [15]. The
resulting snow depths for each pixel fraction are combined and
converted to SWE using the average in situ snow density [17],
[18] found in the Sturm et al. [19], [20] snow classification map.
The Level-3 dataset contains SWE data and quality flags. The
data are available from June 19th, 2002 to October 3rd, 2011
and from July 2nd, 2012 to the present for the AMSR-E and
AMSR2 datasets, respectively. Due to the same instruments and
SWE estimation methods used, these two datasets are treated as
one continuous record in this study.

2) SSM/I and SSMIS: Daily, Level-3 SSM/I and SSMIS
satellite SWE was acquired from NSIDC. Inputs to the retrieval
algorithm are Tb data, combining data from the SSM/I (F13)

2[Online]. Available: https://gportal.jaxa.jp

and the more recent SSMIS (F17).3 In this retrieval, SWE is
derived using the Chang-based [16] NSIDC SWE algorithm
of Armstrong and Brodzik [21] and an algorithm regression to
extend the SWE record over multiple SSM/I and SSMIS satellite
missions (M.J. Brodzik, NSIDC, personal communications).
The combined SSM/I-SSMIS data provides SWE estimates from
2003 onwards. Data are provided in the Lambert azimuthal equal
area projection at 25-km spatial resolution.

3) GlobSnow-2: The European Space Agency (ESA) pro-
vides daily, Level-3A GlobSnow-2 SWE model estimates, pro-
vided in northern hemisphere EASE grid format at 25 km spatial
resolution. The most recent GlobSnow-2 snow model datasets
contain long-term information on Northern hemisphere [35°–
85°] SWE4 (1979-2016). GlobSnow-2 SWE estimates derive
from a data-assimilation scheme which combines satellite pas-
sive microwave radiometer observations with data from weather
stations, as presented in Pulliainen [22] and Takala et al. [23].
Satellite inputs to the model include SMMR, SSM/I, and SSMIS
Tb data in EASE grid format from the NSIDC. Weather station
data are from the European Centre for Medium-Range Weather
Forecasts (ECMWF). GlobSnow-2 SWE processing follows a
four-step process—1) estimate snow depth (SND) over each
EASE grid cell through an emission model inversion of the
18.7 and the 36.5 GHz passive microwave Tb bands calibrated
to weather stations providing SND measurements, 2) convert
estimated SND to estimated SWE using a snow density value
for each grid cell, 3) generate an interpolated SND/SWE back-
ground map derived solely from weather station observations,
and 4) construct the final SWE estimate [23], [24]. The last step
uses a Bayesian spatial assimilation approach to combine data
from 3) with the model estimates from 2). The underlying snow
emission model of the GlobSnow-2 SWE data is the semiem-
pirical HUT snow emission model of Pulliainen et al. [25]. The
HUT snow model was previously validated against tower-based
and airborne reference radiometer observations [25], [26]. The
GlobSnow-2 SWE product also provides information on snow
extent by using the SWE values as a means to describe overall
snow extent [23]. Snow-free areas (0%), areas with melting
snow (0%–100%), and areas with a full snow cover (100%)
are denoted with 0, 0.001, and > 0.001 mm SWE, respectively.
Melting snow is detected using the approach described in Takala
et al. [27]. However, areas with periodic wet snow or a thin snow
pack are not consistently identified and typically not contained
in GlobSnow-2 [23]. Snow-free regions thus may include areas
with occasional wet snow cover. Consequently, GlobSnow-2
SWE values are most reliable in regions with seasonal dry snow
cover [24]. The data for this study are from the Version 2.0
dataset.5 GlobeSnow is suitable for hydrological modeling and
records are available in near-real time.6

4) SNODAS and Ground Observations: The SNODAS pro-
vides SWE model estimates for the contiguous U.S., in an
equidistant cylindrical latitude–longitude grid at a grid spac-
ing of 30-arc seconds (∼1 km). SNODAS is an energy-and-
mass balance snow modeling and data assimilation system that

3[Online]. Available: http://cires1.colorado.edu/∼brodzik/F13-F17swe/
4[Online]. Available: http://www.globsnow.info/swe/
5[Online]. Available: http://www.globsnow.info/swe/archive_v2.0/
6[Online]. Available: http://www.globsnow.info/swe/archive_v2.0/
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simulates SWE and other snowpack characteristics for the con-
tiguous U.S. [28]. Model simulations of snow [3] are gener-
ated from hydrometeorological observations and downscaled
gridded numerical weather model forcing using the mesoscale
rapid update cycle (RUC2) prediction model [29]. The snow
model employs the approaches by Tarboton and Luce [30] and
Jordan [31] to solve for snow surface temperature energy and
mass fluxes, respectively. Ground-based, airborne, and satellite
optical snow cover observations from GOES and AVHRR are
assimilated periodically using a Newtonian nudging technique
to update the modeled snow states across the U.S. [28]. Annual
counts of SWE ground and airborne observations assimilated
into SNODAS in the RRB from 2003 to 2016 were used to
support this study. The SNODAS data for this study are from the
Version 1 data; masked (i.e., contiguous U.S.) data are available
from September 30th, 2003 onwards [7].

III. METHODS

The four gridded daily SWE products, hereafter referred to
as “SSM/I,” “AMSR-E/2,” “SNODAS,” and “GlobSnow-2” are
available for 12 water years, except in 2012 when no AMSR-E
or AMSR2 data were available. To reduce the influence of
wet snow contamination which tends to lower satellite passive
microwave SWE estimates and ensure basin coverage for days
with orbital gaps between satellite overpasses, weekly maximum
SWE values were generated for each pixel for each gridded SWE
product. Annual maxima for each water year were extracted
from the weekly time series. Anomalous, very high SWE values
(>300 mm) were observed in isolated AMSR-E and SSM/I
pixels during early and late winter when SWE was generally
low. SWE values that exceeded 300 mm during these periods
were removed from the analysis. To facilitate comparison among
the differently gridded SWE products, weekly and annual time
series for each record period were spatially aggregated to the en-
tire RRB, the northern RRB and the southern RRB (described in
section 4.2), and the individual NCRFC forecast basins. Basins
that contain large permanent water bodies are flagged within the
SWE products. No assessment was made for these areas.

Significant differences in the population medians among
annual and weekly SWE products were identified using the
Kruskal–Wallis test [32] for each NCRFC forecast subbasin.
The Kruskal–Wallis test is the nonparametric equivalent of
the better-known analysis of variance (ANOVA). A significant
difference indicates that at least one SWE product comes from a
different population than the others but does not identify which
products differ. The Dunn’s test was conducted to identify which
products differed only for basins for which the Kruskal–Wallis
test identified significant differences (p ≤ 0.05) [33]. To control
the family-wise error rate of the Dunn’s test, p-values for the
testing of six sets of differences among the four SWE products
were adjusted using the Bonferroni method [34]. The Kruskal–
Wallis test was applied to annual maximum (or “peak”) SWE
as well as the weekly maximum SWE. The Dunn’s test, when
appropriate, was applied to the annual maxima.

Temporal correlation among the SWE products was exam-
ined by computing and comparing weekly climatologies and
anomalies. The temporal analysis was stratified by NCRFC

forecast basin into northern and southern RRB following the
results from the peak SWE Kruskal–Wallis test. The gridded
weekly time series were used to construct weekly climatolo-
gies and corresponding weekly anomalies (i.e., with seasonality
removed) for each SWE product, for both the northern and
southern basin extent. The weekly climatology (WClim) was
computed for each basin (i) and week (m) as follows:

WClimi,m =

∑N
j=1 SWE(Max)i,m,j

N
(1)

where SWE(Max) is the weekly maximum gridded SWE av-
eraged over each basin, j is the water year number, and N
is the number of water years in the time series. A weekly
anomaly time series was computed for each basin by subtracting
the weekly climatology WClim from the weekly time series
of SWE(Max) for each SWE product and northern and southern
basin extent i.

Relative differences (RelDiff) between the annual maximum
SWE were computed by forecast subbasin for all SWE product
combinations as follows:

RelDiffi =

[∑N
j=1 (SWE_A(Peak)j − SWE_B(Peak)j)

∑N
j=1 SWE_B(Peak)j

]

∗ 100 (2)

where SWE_A(Peak) and SWE_B(Peak) are the paired peak
(i.e., annual maximum) SWE averaged over each NCRFC basin i
(SSM/I & AMSR-E/2, SSM/I & SNODAS, SSM/I & GlobSnow,
AMSR-E/2 & SNODAS, AMSR-E/2 & GlobSnow, SNODAS
& GlobSnow).

IV. RESULTS

A. Differences Among the SWE Products

Fig. 2 shows the differences in peak SWE values among the
four products from the Kruskal-Wallis test. Differences were
detected among the four SWE products in much of the northern
portions of the RRB. There are no significant differences among
the SWE products in the southern RRB subbasins (Fig. 2). While
not all forecast subbasins in the northern region are significantly
different, there is a pattern of subbasins that exhibit consistently
different behavior between the four datasets (p ≤ 0.1).

The posthoc Dunn’s test was conducted to identify which
products are different from the others (Fig. 3). Clearly, the signif-
icant differences documented with the Kruskal–Wallis test in the
northern forecast basins (Fig. 2) are due to differences between
the satellite observations (SSM/I, ASMR-E/2) and the model
outputs (SNODAS, GlobSnow-2). The test further indicates that
these differences are primarily driven by differences between the
satellite products and the SNODAS model. The satellite products
and GlobSnow-2 differences are limited to the northwestern part
of the basin. The satellite records only differ significantly in a
single, remote basin in the far eastern portion of the RRB. Also,
there are no significant differences between the SNODAS and
the GlobSnow-2 products.

The Kruskal–Wallis test was also applied to the weekly SWE
products (Fig. 4). Almost all the subbasins have significant
differences early in the winter season (weeks 5–10). Those
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Fig. 2. p-values for the Kruskal–Wallis test for differences in annual maximum (SWE) from 2004 to 2016 for four operational SWE products (SSM/I, AMSR/E,
AMSR2, SNODAS, and GlobSnow-2) in the RRB. Cold colors indicate weak evidence that the products differ and warm colors strong evidence. Forecast subbasins
with significant differences of p ≤ 0.05 are outlined in black. White areas contain large permanent water bodies (outlined in dark gray) and were excluded from
the analysis. Smaller bodies of water (outlined in dark gray) are also visible in the RRB but were not excluded from the analysis. The forecast basins outlined in
black and light gray correspond to the northern and southern RRB, respectively.

Fig. 3. p-value for the Dunn’s test for differences in annual maximum SWE from 2004 to 2016 between the four operational SWE products (SSM/I, AMSR-E/2,
SNODAS, and GlobSnow-2) in the RRB. Cold colors indicate weak evidence that the products differ and warm colors indicate strong evidence. Forecast subbasins
with significant differences of p ≤ 0.05 are outlined in black. White areas contain large permanent water bodies (outlined in dark gray) and were excluded from
the analysis. White basins (outlined in light gray) are not significant as per the Kruskal–Wallis test and no Dunn’s test was applied.
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Fig. 4. (Contiuned.)
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Fig. 4. Same as Fig. 2 but for differences in weekly maximum SWE. Weeks 1–4 as well as week 31–34 are not shown due to data gaps in at least one of the SWE
products.

differences almost entirely disappear by week 12 in December.
However, in the northern RRB differences persist throughout
much of the peak winter season (week 14–25), with many of the
same basins identified in Fig. 2 identified here between week 14
and 25. However, there is no single week during the peak winter
season where the patterns of significantly different subbasins
match those shown in Fig. 2. This mismatch could suggest
important differences in the timing of peak SWE among the
products. Finally, the snowmelt season shows mixed results with
virtually no differences among the SWE products early in the

melt season (weeks 26–27). Dunn’s testing of the differences in
the northern RRB during the winter season are primarily driven
by differences between the satellite products and the SNODAS
model.

B. Relative Differences

Fig. 5 presents maps of pairwise relative differences of peak
SWE among the four SWE products over the 12-year study
period. There are virtually no differences in peak SWE between
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Fig. 5. Relative difference in the RRB forecast subbasins from 12 years (2004–2016) of peak SWE using all combinations of the four operational SWE products
(SSM/I, AMSR-E/2, SNODAS, and GlobSnow-2). Warm colors indicate a positive bias (product in the column has larger mean peak SWE than the product in the
row) and cold colors a negative bias (column smaller than row). White areas represent large permanent water bodies (outlined in gray) and are excluded from the
analyses against SNODAS.

the satellite products during the 12-year observation period,
except in the northeastern corner of the basin where SSM/I is
lower than AMSR-E/2 by approximately −25% (Fig. 5). The
model results have small differences, 20–35 mm, with SNODAS
tending to be lower than peak GlobSnow-2 SWE by approx-
imately −25% particularly in the north-northeastern region
(Fig. 5). The differences between the model and satellite peak
SWE range from 20 to 100 mm (not shown). Basins that were
significantly different in the posthoc Dunn’s test have the largest
absolute differences, with satellite peak SWE exceeding model
peak SWE by 40–125% (Fig. 5). While the differences between
GlobSnow-2 and the satellite SWE values are similar throughout
the basin, greater differences are evident between SNODAS and
the satellite products in some regions. For example, the center
part of the basin near Grand Forks (Fig. 1) has high differences
on the order of 40–90%, whereas the neighboring regions and
the basins to the south show minor differences. Based on these
results, the RRB was divided into the northern and southern basin
for further analyses. The northern RRB includes all significantly
different NCRFC forecast basins (outlined in black in Fig. 2) and
the southern RRB contains the remaining forecast basins.

C. Temporal Agreement Among the SWE Products

The weekly climatology, annual time series, and the time
series of anomalies from the climatology are shown in Figs. 6
and 7 for the northern and southern RRB, respectively. The
northern portion of the RRB (Fig. 6) typically accumulates snow
beginning in early November through the first week of March.
The southern portion of the basin (Fig. 7) typically begins to
accumulate snow a few weeks later. The snowpack declines
relatively rapidly and disappears by early May. AMSR-E/2 has a
relatively high SWE very early in the season. Peak SWE values
are less than 100 mm, with the northern region’s peak SWE
exceeding that of the southern region by about 25 mm.

All products peak at about week 22, share similar melt period
features, and have no snow by the 31st week. The greatest
difference among the products is the magnitude of SWE during
the peak snow season (weeks 18–23). There is a relatively large
spread among the products in the northern basin’s climatology
[Fig. 6(a)]. This spread is much lower in the southern portion of
the RRB [Fig. 7(a)]. In the north, SNODAS has the lowest aver-
age peak SWE (70 mm), AMSR-E/2 and GlobSnow-2 are nearly
identical (82 mm), and SSM/I (95 mm) has the highest seasonal
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Fig. 6. Weekly SWE climatology (a), weekly time series (b), and weekly anomaly time series (c) from SSM/I, AMSR-E/2, SNODAS, and GlobSnow-2 SWE
values from the northern RRB for 2004–2016. The weekly anomaly time series (c) is the weekly time series (b) minus the weekly SWE climatology (a). Time
series values are spatial averages across all forecast subbasins where the Kruskal–Wallis test found a statistically significant difference between the SWE products
(black outlines in Fig. 2).

peak SWE. In the south, SSM/I SWE is similar to GlobSnow-2
and only slightly higher than the other products. Differences are
noted throughout the accumulation phase. SSM/I has greater
SWE increases in the later part of the accumulation phase.
GlobSnow-2 is nearly identical to SSM/I until week ten, then
rapidly increases for several weeks, and remains higher than the
other three products for much of the accumulation period.

The time series for the northern basin [Fig. 6(b)] shows
that for all but three years (2010, 2013, and 2015) SNODAS
has a considerably lower seasonal peak SWE, as much as
100%, relative to the satellite and GlobSnow-2 products.
GlobSnow-2’s patterns of snow accumulation and peak SWE
are not consistent with the other products. In some years
(e.g., 2007), GlobSnow-2 is greater than the other products,
in other years, it tracks the satellite SWE closely, and in the
remaining years, it is quite similar to SNODAS. In contrast,
the differences between SNODAS and the satellite products are
fairly consistent with SNODAS having lower SWE values in

most years. In a few years (e.g., 2010 and 2013), SNODAS
is nearly identical to or exceeds the satellite products in the
northern [Fig. 6(b)] and southern region [Fig. 7(b)], respectively.

Despite the differences in magnitude, the weekly SWE
anomalies in Figs. 6(c) and 7(c) show that all the SWE products
typically agree on which periods have relatively more and less
snow when compared to the products’ weekly climatology. For
example, there is good agreement in the sign and evolution of
SWE anomalies among the products in 2013 (a large positive
SWE anomaly) and 2015 (a large negative SWE anomaly) in
both the northern [Fig. 6(c)] and southern [Fig. 7(c)] RRB. The
anomaly signals are clearest in years with much higher than
average SWE values or less SWE. Moderately higher values
in SWE are more difficult to discern. For example, in 2008, a
consistent signal is not evident throughout the basin. Similarly,
in the northern basin, the model and satellite products disagreed
about the timing of peak SWE, e.g., in 2005 [Fig. 6(b) and (c)],
which supports earlier findings (Fig 4).



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

Fig. 7. Same as Fig. 6 but for the southern RRB. Time series values are spatial averages across all forecast subbasins where the Kruskal–Wallis test did not find
a statistically significant difference between the SWE products (light gray outlines in Fig. 2).

The strength of temporal correspondence between the SWE
products can be summarized by their temporal correlation on
a weekly basis. Fig. 8 presents pairwise correlations between
the SWE products determined from the weekly anomaly time
series [Figs. 6(c) and 7(c)]. The satellite products are strongly
correlated with one another (R ∼ 0.9, p < 0.01). The overall
correspondence between the satellite and model products is
lower but still significant (R 0.5-0.7, p < 0.01). The satel-
lite products show better agreement with SNODAS than with
GlobSnow-2. SSM/I SWE agrees better with the model simula-
tions than AMSR-E/2 SWE.

V. DISCUSSION

Previous research identified differences between model and
satellite SWE products in the Northern Great Plains region [9].
In the current study, the peak SWE product comparison identifies
highly localized differences between the satellite observations

and SNODAS in the northern RRB that were not present in the
southern region. Satellite estimates of peak SWE in the forecast
subbasins in the northern region were 40–125% higher than the
model results. This region is notable for its extremely sparse in
situ data available to update the SNODAS simulation. Indeed, 15
or fewer in-situ or airborne SWE observations were assimilated
into SNODAS in the northern region during the 13-year study
period (Fig. 9). The region is also noted for having poor radar
precipitation coverage [35]. This lack of ground observations
in the northern region was also noted by Vuyovich et al. [9]
and Josberger et al. [36] who conclude that satellite passive mi-
crowave SWE observations can enhance snowpack information
in the northern Great Plains region. From Fig. 9 it appears that
good agreement between model and satellite estimates generally
corresponds to where the most in-situ observations are available.
Exceptions to this pattern are the southwestern (northeastern)
portion of the basin where a relatively low (high) number of
observations exist. Relative differences between the satellite and



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SCHROEDER et al.: COMPARISON OF SATELLITE PASSIVE MICROWAVE WITH MODELED SNOW WATER EQUIVALENT ESTIMATES 11

Fig. 8. Correlation values between weekly maximum anomaly SWE values from SSM/I, AMSR-E/2, SNODAS, and GlobSnow-2; in the northern, southern, and
entire RRB for 2004–2016. All relationships are statistically significant at a significance level of 0.01.

Fig. 9. Total number of SWE observations in the RRB for the period 2004–2016. Circles indicate locations of NOAA airborne gamma flight lines and ground
stations. The number of observations collected at each location is shown by the circle color. Point locations were interpolated using inverse distance weighted
interpolation to help visualize the number of observations used to support SNODAS in different parts of the RRB. Actual figure color is a linear interpolation of
the colors in the legend.

model estimates in the northern region were less pronounced for
the comparison against the GlobSnow-2 estimate which was not
surprising because the GlobSnow-2, in addition to ground obser-
vations from the region, assimilates satellite passive microwave
Tb data [22], [23].

No peak SWE differences were detected between the two
model estimates, likely because both models are constrained
by ground observations. There was only one RRB subbasin
that showed a significant difference between the two satellite
estimates of peak SWE. This difference can be explained by
that subbasin’s dense forest canopy [6], [36]. Unlike the SSM/I
SWE retrieval algorithm [21], the AMSR-E/2 SWE retrieval
algorithm explicitly accounts for the effects of forest cover on
SWE [9], [14], [15], [37]. Overall, both SSM/I and AMSR-E/2
can provide a consistent record of peak SWE for similar regions
with shallow snowpacks and limited dense forests [38].

The satellite estimates showed better temporal correlation
with SNODAS than GlobSnow-2. This result was somewhat

surprising because SNODAS does not assimilate passive mi-
crowave satellite data for estimating model SWE whereas the
GlobSnow-2 does. The lower temporal correspondence for the
GlobSnow-2 may be attributed to differences in the snowmelt
detection approaches and the general poor performance of
GlobSnow-2 with thin snowpacks and periodic wet snow con-
ditions [23] which are not uncommon in the RRB [5], [6].

Relatively poor temporal agreement between the satellite and
model estimates may, in part, be caused by the updates made to
the SNODAS [3], [28] and GlobSnow-2 SWE [22], [23] using
ground observations which do not occur on a regular sched-
ule nor cover the entire basin as compared to the twice-daily
satellite observations. The SSM/I SWE showed better temporal
correlation with model estimates than the AMSR-E/2 implying
that SSM/I SWE might be more useful for real-time flood fore-
casting than the AMSR-E/2 in the RRB and similar regions. It
seems reasonable that the lower temporal correspondence of the
AMSR-E/2 stems from differences between the SWE retrieval
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algorithms, the frequency bands employed, and the utility of Tb

thresholds for wet snow detection that might not be optimal for
use in the RRB. Forest cover [37], [39], wet snow [40], water
vapor and cloud cover [41]–[43], and unintended penetration
into underlying (wet) soil layers [44], [45] using lower frequency
Tb observations (e.g., 10 GHz) in the AMSR-E/2 SWE algorithm
can bias satellite SWE estimates. The satellite SWE estimates
are also expected to be poor in the presence of water bodies [46],
lake ice [47], ground ice, ice lenses [48], and depth hoar, all of
which offer characteristically different Tb signatures that vary
with frequency [26].

VI. CONCLUSION

Model simulations of SWE from SNODAS and GlobSnow-2
provide a potentially useful dataset of basin-wide SWE esti-
mates in the RRB. However, accurate model estimates of SWE
are largely dependent on accurate precipitation forcings and
sufficient ground measurements to constrain model estimates.
Unfortunately, high-quality in-situ observations of SWE are
sparse in the RRB, particularly prior to maximum accumulation,
and radar coverage is poor. Accurate determination of SWE for
operational flood forecasting purposes therefore remains chal-
lenging. Satellite passive microwave SWE observations have the
potential to overcome this challenge by providing flood fore-
casters with up-to-date, independent SWE information across
the entire RRB.

While there are no significant differences between the peak
SWE products across the southern RRB, the satellite passive
microwave SWE estimates differ significantly from the model
estimates across the northern domain of the RRB. The weekly
time series show that differences occur throughout the basin
when the snowpacks are extremely thin (<20 mm). The majority
of the peak SWE differences in the northern domain are due
to differences between the satellite SWE estimates and the
SNODAS simulation; the satellite products and GlobSnow-2
differences are limited to the northwestern part of the basin.
The satellite peak SWE estimates in the forecast subbasins
in the northern region are on average 40–125% larger than
SNODAS with large differences in the center part of the basin
near Grand Forks. Examination of concurrent records of ground
and airborne observations from the region suggests that the low
SWE may be due to lack of ground observations to update
the SNODAS simulation. In contrast, the southern RRB shows
no statistically significant differences in peak SWE among the
products. In this region there is better radar coverage and a
notably larger concentration of ground observations to inform
the model simulations.

A strong agreement in peak SWE between the satellite and
model estimates in the southern RRB increases confidence in
both model and satellite SWE estimates. Moreover, it highlights
the importance of satellite passive microwave SWE as an in-
dependent source for monitoring the seasonal snowpack and
supporting improved snowmelt flood forecasts in regions where
in-situ SWE observations may be limited and/or radar coverage
is poor.

In summary, this paper documents that operational SWE
observations from spaceborne passive microwave instruments
differ from operationally derived model SWE simulations in
data sparse regions such as the northern RRB. Based on these

findings, this paper recommends that satellite SWE observations
should be considered for improving operational snowmelt fore-
casting in the RRB. These improvements could be realized by
considering satellite SWE observations as an independent source
of information in the RRB for both the operational snowmelt
forecast and SNODAS. Further support for this recommendation
would benefit from comparison against in-situ observations
and/or field campaigns. The authors further recommend pre-
ferred use of the SSM/I over the AMSR-E/2 product due to the
demonstrated improved temporal performance relative to the
model simulations.
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