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Abstract
In the Northern Great Plains, melting snow is a primary driver of spring flooding, but limited

knowledge of the magnitude and spatial distribution of snow water equivalent (SWE) hampers

flood forecasting. Passive microwave remote sensing has the potential to enhance operational

river flow forecasting but is not routinely incorporated in operational flood forecasting. We com-

pare satellite passive microwave estimates from the Advanced Microwave Scanning Radiometer

for the Earth Observing System (AMSR‐E) to the National Oceanic and Atmospheric Administra-

tion Office of Water Prediction (OWP) airborne gamma radiation snow survey and U.S. Army

Corps of Engineers (USACE) ground snow survey SWE estimates in the Northern Great Plains

from 2002 to 2011. AMSR‐E SWE estimates compare favourably with USACE SWE measure-

ments in the low relief, low vegetation study area (mean difference = −3.8 mm, root mean

squared difference [RMSD] = 34.7 mm), but less so with OWP airborne gamma SWE estimates

(mean difference = −9.5 mm, RMSD = 42.7 mm). An error simulation suggests that up to half of

the error in the former comparison is potentially due to subpixel scale SWE variability, limiting

the maximum achievable RMSD between ground and satellite SWE to approximately

26–33 mm in the Northern Great Plains. The OWP gamma versus AMSR‐E SWE comparison

yields larger error than the point‐scale USACE versus AMSR‐E comparison, despite a larger mea-

surement footprint (5–7 km2 vs. a few square centimetres, respectively), suggesting that there are

unshared errors between the USACE and OWP gamma SWE data.
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1 | INTRODUCTION

In the Northern Great Plains, especially the Red River of the North

Basin, snowmelt is a dominant driver of flooding (Berghuijs, Woods,

Hutton, & Sivapalan, 2016). For example, the record‐breaking 1997

Red River spring snowmelt flood damaged 85% of structures in the

Grand Forks, North Dakota area and totalled $4 billion in U.S. dam-

ages, due to failure of the protective dikes around the city after mis-

communication and under‐prediction of the flood peak (Pielke, 1999;

Todhunter, 2001). The 1997 flood, and additional major snowmelt

floods in 2009 and 2011, forced preparations and evacuations, and

inundated homes, resulting in large societal and economic impacts to

communities in North Dakota and Minnesota in the United States
wileyonlinelibrary.com/jo
and the Canadian province of Manitoba (Rannie, 2016; Stadnyk,

Dow, Wazney, & Blais, 2016; Todhunter, 2001; Wazney & Clark,

2016). Accurate flood forecasts are important to help agencies and

communities prepare for flood events and prevent damages, as well

as properly allocate flood management efforts and funds. In the north

central United States, the National Weather Service (NWS) North

Central River Forecast Center (NCRFC) provides spring flood forecasts

in order to prepare and/or evacuate at‐risk communities. Unfortu-

nately, forecasting of flood levels has proven difficult in the region,

partly due to insufficient information about snow properties. For

instance, as recently as 2013, with the observational data sets and

models that were available at the time, the NCRFC forecasted a peak

flow that exceeded the observed by 70%.
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The most important measure of snow for water resources applica-

tions is snow water equivalent (SWE), which is the depth of liquid

water that would result if all snow on the ground surface melted.

Currently, SWE in the Northern Great Plains, like many other regions

of the country, is measured in situ at ground stations and remotely

via aircraft using gamma radiation methods (Carroll, 2001). In situ

ground measurements are the most trusted (i.e., accurate) SWE obser-

vations, but the spatial footprint of these measurements is very small

(on the scale of centimetres) and daily (or even weekly) data are only

available in a handful of locations in the region. Additionally, snow

properties can vary considerably over small distances, especially in

windy or rugged areas (Carroll & Carroll, 1989; Cork & Loijens,

1980), so the “true” SWE value of a large area is often unknown

and may not accurately be characterized by a single measurement site

(e.g., Clark et al., 2011).

The airborne gamma radiation snow survey (Carroll, 2001; Carroll

& Schaake Jr, 1983; Peck, Bissell, Jones, & Burge, 1971; Peck, Carroll,

& VanDemark, 1980), currently operated by the National Oceanic and

Atmospheric Administration (NOAA) Office of Water Prediction

(OWP; and formerly by the National Operational Hydrologic Remote

Sensing Center (NOHRSC)), provides SWE observations to regional

flood forecasting centres over a network of flight lines with spatial

footprints of 5–7 km2. This larger measurement scale reduces effects

from small‐scale SWE variability. However, operational limitations

restrict the number of observations from each flight line, so SWE data

are received from each flight line only four or fewer times per winter.

Satellite passive microwave radiometry (Chang, Gloersen,

Schmugge, Wilheit, & Zwally, 1976; Hallikainen, Ulaby, & Abdelrazik,

1986; Mätzler, 1987; Ulaby & Stiles, 1980) can provide another source

of SWE information that is not currently used by operational flow

forecasting centres in the region. Satellite observations are available

on a daily basis at low spatial resolution over the entire region, which

could improve the temporal resolution and spatial coverage of SWE

data available from current observations. Some of the initial passive

microwave SWE studies were conducted in the Northern Great

Plains (e.g., Foster et al., 1980), along with continued SWE algorithm

development (Foster, Barton, Chang, & Hall, 2001; Gan, Kalinga, &

Singh, 2009; Josberger & Mognard, 2002; Josberger, Mognard, Lind,

Matthews, & Carroll, 1998; Mognard & Josberger, 2002; Singh &

Gan, 2000), which lends confidence to quality of the satellite observa-

tions in the region. A handful of studies have evaluated passive micro-

wave estimates in the Northern Great Plains and southern Canadian

prairies. Chang et al. (2005) compared in situ ground observations of

snow depth to Special Sensor Microwave Imager (SSM/I) satellite

snow depth estimates in the Northern Great Plains, indicating that

multiple ground observations are necessary in order to approximate

the larger scale satellite estimates (see Section 6.2). Mote, Grundstein,

Leathers, and Robinson (2003) compared SSM/I SWE to in situ mea-

surements and SWE from the SNTHERM model at five stations in

the Northern Great Plains. The authors found that the SSM/I SWE

overestimated in situ SWE in late winter, likely due to metamorphism

and grain growth.

Operational flood forecasters still struggle to accurately determine

how much water equivalent is stored in the snowpack and could

potentially contribute to spring snowmelt flooding (Pedro Restrepo
and Mike DeWeese, NOAA NCRFC, and personal communications).

The long‐term vision is to operationalize satellite passive microwave

observations to improve snowmelt driven flood forecasting for water

management applications (Tuttle et al., 2017). Fulfilling this vision

requires evaluation of microwave SWE data with respect to current

data sources and, ultimately, identification of an optimal combination

of those data sources that maximizes the available knowledge

from different measurement techniques. Although passive microwave

SWE measurements have strong potential to support water resources

management, no previous studies have compared passive microwave

SWE to current operational gamma airborne and ground observations

for watershed applications. Although past analyses have evaluated

passive microwave SWE in the Northern Great Plains, detailed

examination of estimates from the Advanced Microwave Scanning

Radiometer for the Earth Observing System (AMSR‐E) in this area

are limited. Similarly, few studies have compared OWP gamma

observations to passive microwave estimates (Gan et al., 2009; Mote

et al., 2003; Singh & Gan, 2000).

In this analysis, we examine the relationships between satellite

SWE and other SWE observations in the Northern Great Plains in

order to understand the potential value of passive microwave SWE

observations for flood forecasting purposes and to provide a baseline

of historical ground and airborne observations available to support

for future snow satellite missions. We compare AMSR‐E SWE

estimates to two independent sources of SWE observations that are

currently used to support flood forecasting in the region: (1) U.S. Army

Corps of Engineers (USACE) ground snow surveys and (2) NOAA OWP

airborne gamma radiation snow surveys (hereafter, “OWP gamma

SWE”). The following sections will describe the study area, each of

the SWE data sources, and the methods of comparison, followed by

presentation and discussion of results.
2 | STUDY AREA

The study region (Figure 1) comprises parts of the north central United

States and southern Canadian prairies, an area of approximately

700,000 km2. This area includes parts of the Mississippi, Missouri,

and Assiniboine‐Red River drainage basins. The region is generally flat

lying with little vegetation cover during winter and dominated by agri-

cultural (65%) and temperate grassland (27%) land cover types (North

American Land Change Monitoring System, 2010). Therefore, two

aspects that complicate estimation of passive microwave and airborne

gamma radiation SWE—dense vegetation and rugged terrain—are

largely absent from the study area.

The annual mean air temperature of the study region ranges from

11 °C in the south‐eastern part of the region (Iowa) to 1 °C in the north

(Canadian prairies), and the annual precipitation decreases from

100 cm in the southeast to 35 cm in the west (western North Dakota;

Willmott & Matsuura, 2001, updated 2015). December to April precip-

itation is between 5 and 10 cm for most of the region, reaching 20 cm

in the southeast. A vast majority of the study area (88%) falls under the

“prairie” snow classification from Liston and Sturm (2014), which is

characterized by shallow (usually <1 m), moderately cold snowpacks

that are highly affected by windy conditions (i.e., snow drifts and wind



FIGURE 1 Maps showing the locations of observations used in this analysis. The study area, comprising generally low relief, agricultural or prairie
areas of the north central United States and southern Canada, is denoted by the dark grey outline. The left panel displays the Advanced Microwave
Scanning Radiometer for the Earth Observing System pixel grid (grey boxes) and the Office of Water Prediction gamma snow survey flight lines
(black lines) used in this analysis. The right panel shows the subset of the study area for which U.S. Army Corps of Engineers ground snow water
equivalent estimates were collected. The Advanced Microwave Scanning Radiometer for the Earth Observing System grid is again shown, along
with U.S. Army Corps of Engineers annual survey sites (circles) and weekly survey sites (labelled black polygonal symbols) within the study area
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slabs common). Another 8% of the study area is warm forest, along

with 1% tundra, 1% taiga, and 2% open water.
3 | DATA

The data used in this analysis are restricted to the time period of the

AMSR‐E satellite instrument, which operated aboard the polar‐orbiting

Aqua satellite platform from June 18, 2002, until October 4, 2011. The

SWE observations used in this study are detailed in the following

sections, including theoretical bases, sampling methodologies, and

uncertainties inherent in each data source.
3.1 | AMSR‐E passive microwave SWE

Microwave radiation is naturally emitted from the land surface, includ-

ing soil, snow, and vegetation. Snow crystals scatter and absorb micro-

wave radiation, and deeper snowpacks lead to more scattering and

lower brightness temperatures than shallower snowpacks, for a given

snow grain size and temperature (Chang et al., 1976; Chang, Foster,

Hall, Rango, & Hartline, 1982; Ulaby & Stiles, 1980). Snowpack atten-

uation is also affected by snow grain size and density (Chang et al.,

1976; Josberger & Mognard, 2002; Kelly, Chang, Tsang, & Foster,

2003; Ulaby & Stiles, 1980). Microwave radiation at higher frequencies

is scattered more effectively than at lower frequencies, leading to

observation of different brightness temperatures in different portions

of the microwave spectrum (Chang, Foster, & Hall, 1987; Ulaby &

Stiles, 1980). This is the basis for operational SWE algorithms (e.g.,

Kelly, 2009), which scale the difference between a high‐frequency

(typically 37 GHz) and low‐frequency (typically 18 GHz) brightness

temperature measurement by an empirical factor that accounts for

an assumed snow density and grain size in order to obtain to SWE.
The brightness temperature difference technique is often referred to

as the Chang algorithm (Chang et al., 1987). Use of the brightness tem-

perature difference minimizes the snow temperature effect on the

microwave signal and for frozen or dry underlying soils, limits the

effect of subsurface roughness and dielectric properties (Kelly et al.,

2003). Updates of the Chang method include corrections for forest

fraction and snow grain size (e.g., the operational AMSR‐E algorithm;

Kelly, 2009). Limitations to passive microwave SWE estimates include

poor performance in densely forested areas, in mountainous terrain

with deep snowpacks, and in close proximity to large water bodies

(Dong, Walker, & Houser, 2005; Hancock, Baxter, Evans, & Huntley,

2013; Vuyovich, Jacobs, & Daly, 2014). Furthermore, passive micro-

wave SWE estimates are not reliable when liquid water is present in

the snowpack or on the land surface because the microwave signal

no longer has the desired scattering behaviour (Stiles & Ulaby, 1980;

Walker & Goodison, 1993). Although atmospheric changes may alter

the attenuation of the microwave signal, this error is assumed to be

small for SWE frequencies (Tedesco & Narvekar, 2010), but recent

findings suggest that this may not be the case for frequencies

37 GHz or higher (Wang & Tedesco, 2007; Tedesco & Wang, 2006;

Ronny Schroeder, personal communication). Additionally, spatial inter-

polation during gridding of the passive microwave brightness temper-

ature data, along with the difference in instantaneous field of view of

satellite instruments at different microwave frequencies, may intro-

duce error into passive microwave SWE estimates. Tedesco and

Narvekar (2010) provide a summary of the current limitations of

operational passive microwave snow estimates.

The passive microwave SWE data used in this study (AE_DySno;

Tedesco, Kelly, Foster, & Chang, 2004) derive from the AMSR‐E

satellite instrument. AMSR‐E had near‐complete global coverage on

a daily basis, with equatorial overpass times of approximately

1:30 a.m. (descending) and 1:30 p.m. (ascending) local time. Only data
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from the descending overpass were used to create the AE_DySno

SWE product, in order to minimize the impact of wet snow. The

AMSR‐E SWE algorithm (Kelly, 2009; Chang & Rango, 2000) not only

uses the basic framework of the Chang algorithm (i.e., brightness

temperature difference between the 36.5 and 18.7 GHz channels;

Chang, Foster, & Hall, 1996; Foster, Chang, & Hall, 1997) but also

includes higher (89.0 GHz), intermediate (23.8 GHz), and lower

(10.7 GHz) frequency microwave observations in order to identify

shallow and deep snow, as well as the ratio between horizontal and

vertical polarization at the 36.5 and 18.7 frequencies in order to

account for snow metamorphism (i.e., grain growth). The daily L3

AMSR‐E SWE data are provided at 25‐km resolution in Northern

Hemisphere Equal‐Area Scalable Earth Grid format on the National

Snow and Ice Data Center website (https://nsidc.org/data/ae_dysno).

The AMSR‐E grid is shown in grey in Figure 1.
3.2 | USACE ground snow surveys

In situ ground snow survey data used in this analysis were collected

by the USACE St. Paul District. SWE measurements are collected by

the St. Paul District each year in order to determine how much

water equivalent is contained in the snowpack, primarily for spring

flood risk assessment and reservoir management. All snow survey

measurements were taken by sampling the snowpack in undisturbed

areas (e.g., no snow drifting) that appeared to be representative of

the surrounding area. To obtain each snow sample, a 3.81‐cm

diameter snow tube was driven vertically downward from the snow

surface to the ground surface, using a rotating motion so that the

saw teeth on the tube cut a core. A shovel was then placed at the

bottom of the core to minimize sample loss, and the snow was

emptied into a plastic bag and weighed (subtracting the weight of

the bag). At each site, at least four snow samples were taken, each

approximately 3–4 m apart, along with corresponding snow depth

measurements obtained with a ruler (William Odell, USACE, personal

communication). The four or more measurements were used to cal-

culate SWE, then averaged to obtain a single mean value for the site

on the given day. Snow density was calculated as average SWE

divided by average snow depth.

Ice lenses, ground ice, and depth hoar are difficult to accurately

sample using ground survey methods, especially with small‐diameter

snow tubes, and can lead to underestimates of SWE (Carroll, 2001).

Additionally, these data are essentially point observations and may

not be representative of large areas. However, ground SWE surveys

are generally considered to be the most accurate observations of

SWE because of the direct nature of the estimation method.

The USACE St. Paul District maintains two types of established

ground snow survey sites. There are 24 “weekly” sites in the District,

but only four are within the study area of this analysis (black polygonal

symbols in Figure 1, right panel). SWE is measured at these sites on an

approximately weekly basis from first snowfall to snow disappearance

in the spring, with a total of 539 SWE observations available for the

four sites during the operational period of AMSR‐E (470 of which were

also coincident with AMSR‐E observations). “Annual” sites are sampled

approximately once per year, often in late February, for years when

there is a significant snowpack and risk of spring flooding (circles in
Figure 1, right panel). There are 254 annual sites in the St. Paul District,

117 of which fall within the study area and were sampled during the

operational period of AMSR‐E (for a total of 760 observations, 702

of which were also coincident with AMSR‐E observations). The USACE

data were obtained from the St. Paul District website (http://www.

mvp‐wc.usace.army.mil/projects/) and via communication with the

USACE St. Paul District.
3.3 | OWP airborne gamma radiation SWE surveys

Gamma radiation is naturally emitted from radioisotopes in soil, includ-

ing potassium, uranium, and thorium. Water in any phase attenuates

the gamma radiation emitted from the ground, which derives from

approximately the top 20 cm of soil (Carroll & Schaake Jr, 1983).

Attenuation can occur due to the presence of soil moisture, ground

ice, standing water, snow, or ice lenses or liquid water in the snowpack

and depends only on water mass (Carroll, 2001).

Research on the use of natural terrestrial gamma radiation to esti-

mate SWE in the United States and Canada began in the late 1960s

(Grasty, 1982; Peck et al., 1971), with an operational flight line net-

work established by the NWS in 1980 (Peck et al., 1980), primarily in

order to assist with flood forecasting. Currently, the NWS flight line

network comprises over 2,400 flight lines covering parts of 29 states

and seven Canadian provinces (Carroll, 2001; http://www.nohrsc.

noaa.gov) and is maintained by the NOAA OWP. On average, each

flight line is approximately 15–20 km long and 330 m wide, with an

areal footprint of 5–7 km2. Gamma radiation is measured using a

detector housed in an aircraft that flies at an altitude of 150 m above

the ground along a given flight line (Carroll, 2001). Gamma radiation

counts are collected along the flight line, as well as the respective

energy of each detected particle, and a weighted moisture estimate

is calculated using the photopeaks of 40K, 208Tl, and for the total count

across the measured spectrum (0.41–3.0 MeV; Carroll, 2001; Carroll &

Schaake Jr, 1983). The counts are corrected to account for atmo-

spheric radon, cosmic radiation, Compton scattering, background radi-

ation from the aircraft and detection system, and attenuation due to

the air mass between the ground and the detector (Carroll & Schaake

Jr, 1983; Peck et al., 1971; Peck et al., 1980). Flight lines are typically

measured once over bare soil in the fall, and later over snow‐covered

ground in the winter. The difference between the measurements

allows for calculation of SWE, where the soil moisture is assumed to

remain constant from the fall to winter measurements (Carroll, 2001;

Carroll & Schaake Jr, 1983).

The OWP gamma radiation snow survey program provides SWE

measurements over the Northern Great Plains, but operational restric-

tions limit observations to four or less times per flight line per year.

Over 27,000 OWP gamma survey estimates are available from 1979

to present across the North America, with a total of 2,335 observations

over 449 flight lines falling within the AMSR‐E operational period and

the study area of this analysis (of which 2,131 observations over 423

flight lines were coincident with AMSR‐E SWE observations). The air-

borne gamma radiation SWE data were obtained from the OWP

(NOHRSC) website (http://www.nohrsc.noaa.gov/snowsurvey/)

(National Operational Hydrologic Remote Sensing Center, 2004). The

flight lines are shown as black lines in Figure 1 (left panel).

Eunang_Cho
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4 | METHODS

This analysis evaluates AMSR‐E SWE data against the other two sets

of SWE observations: (1) USACE ground survey SWE and (2) OWP air-

borne gamma radiation survey SWE. In the first analysis, the AMSR‐E

SWE were directly validated against the USACE snow survey SWE

measurements. This analysis treats the USACE SWE data as point mea-

surements. The USACE SWE data (both “weekly” and “annual” sites)

are compared directly to the daily AMSR‐E SWE value for the 25‐km

pixel that encompassed the given survey location.

Unfortunately, most pixels only contained a single snow survey

location. Chang et al. (2005) indicated that more than 10 point esti-

mates of snow depth within a 1° pixel are necessary to obtain an error

of 50 mm between in situ and SSM/I satellite estimates. In order to

roughly estimate the error inherent in the spatial representativeness

of the snow surveys, an additional simulation analysis was conducted.

For this simulation, the AMSR‐E data were treated as perfect SWE

measurements (i.e., no measurement or algorithm estimation error,

although this is not realistically the case). Then normally distributed

random error with a standard deviation of 25 mm (and mean of

0 mm) was added to the AMSR‐E data (and SWE could not be less than

zero), to simulate the effect of subpixel‐scale heterogeneity on an oth-

erwise perfect measurement. The AMSR‐E SWE data plus error are

analogous to point measurements of SWE. We used these simulated

“point measurements,” to estimate the amount of error due to the

scale mismatch between in situ SWE measurements and satellite esti-

mates (considering only small‐scale heterogeneity in SWE). The value

of 25 mm was an estimate obtained by applying the mean coefficient

of variation for mid‐latitude prairie from Figure 2 in Clark et al.

(2011) to the mean of the AMSR‐E data in our study. We found that
FIGURE 2 Schematic diagram showing how Advanced Microwave Scanni
equivalent (SWE) data were processed for comparison to OWP gamma SW
(OWP) flight lines (black line) could overlap multiple AMSR‐E pixels (note:
flight line to represent the effective sampling area of the method. The righ
values to compare to each OWP gamma observation. The area of the flight
SWE value of that pixel during averaging (i.e., Step 4)
a constant error value better represented the error pattern that we

observed between USACE and AMSR‐E SWE, compared to a constant

coefficient of variation (which underestimated variability at low SWE,

and overestimated variability at high SWE).

The OWP gamma survey SWE observations were also compared

to AMSR‐E SWE. The gamma flight lines frequently overlapped more

than one AMSR‐E pixel. In order to compare the OWP gamma SWE

and AMSR‐E SWE data, the area‐weighted average AMSR‐E SWE

within the effective footprint of each flight line was calculated. For

each OWP flight line, an effective polygonal measurement footprint

was determined using a flat capped, rounded corner buffer around

the given flight line, with a fixed radius of 165 m (i.e., diameter of

330 m; Carroll, 2001; see left panel of Figure 2). On any day when

gamma measurements were collected, the AMSR‐E SWE data within

the given flight line footprint were averaged and weighted according

to the area of the footprint contained within each AMSR‐E pixel. If

AMSR‐E SWE data were not available for a portion of the flight line

footprint, the weighted SWE value was calculated using the area of

the footprint with available data. Flight lines with AMSR‐E SWE data

covering less than 50% of the footprint area were excluded from the

analysis. A general flow chart for this procedure is shown in the right

panel of Figure 2.
5 | RESULTS

The four weekly USACE snow survey sites provide information on

snowpack properties in the study area. Figure 3 shows the mean evo-

lution of snow properties in the study area over the course of the win-

ter during the study period (June 18, 2002, until October 4, 2011).
ng Radiometer for the Earth Observing System (AMSR‐E) snow water
E. The left panel shows how individual Office of Water Prediction
pixels not to scale), and how a buffer (grey area) was used around the
t panel details the steps used to obtain area‐weighted AMSR‐E SWE
line buffer that fell within each pixel was used to weight the AMSR‐E



FIGURE 3 Mean annual temporal evolution of snow properties as
determined from the U.S. Army Corps of Engineers weekly survey
sites within the study area and during the time period of Advanced
Microwave Scanning Radiometer for the Earth Observing System. The
top panel shows snow density, the middle panel shows snow depth,
and the bottom panel shows snow water equivalent. Measurements
from all sites and years are plotted as a function of day of water year
(DOWY; grey circles). The solid black line is the mean, calculated for
weekly bins, and the dotted lines show the mean plus or minus one
standard deviation
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The snow density increases steadily throughout the winter, from the

first snowfall until snowmelt, due to compaction and snowpack meta-

morphism. The snow depth also increases fairly linearly from early

December (day of water year 60 [DOWY 60]) until early February

(DOWY 124) before levelling out and remaining fairly constant until
approximately the second week in March (DOWY 160). At this point,

the snow depth rapidly declines as the snowpack melts, with complete

snowpack disappearance typically by the beginning of April (DOWY

184). The SWE follows a similar pattern to snow depth, except that it

monotonically increases until approximately DOWY 160, after which

it rapidly declines, consistent with the snow depth. Unlike the snow

depth, the SWE increase from early February through early March.

Increase in the SWE (i.e., snowfall) during this midwinter period is bal-

anced by increasing snow density, leading to a fairly constant snow

depth. The snowpack typically lasts approximately 17 weeks, but there

is significant interannual variability.
5.1 | AMSR‐E versus USACE SWE

The AMSR‐E SWE generally captures SWE timing and evolution

across years at the USACE survey sites (Figure 4). The USACE and

AMSR‐E SWE data agree fairly well, although some years exhibit bias

(e.g., Baldhill in 2010, Lac Qui Parle in 2008). The initial snow accumu-

lation phase from the passive microwave SWE appears to track quite

well with the USACE in situ surveys. The abrupt end of season snow

melt captured by the microwave is also generally well supported by

the USACE in situ surveys. The daily microwave SWE observations

reflect the overall seasonal trends of the weekly USACE in situ sur-

veys, but with greater scatter. In general, the AMSR‐E SWE magnitude

at these same locations is lower than the USACE SWE throughout the

winter (mean difference of 7 mm). However, there is considerable

day‐to‐day and year‐to‐year variability. This suggests that even within

a relatively small region, large differences between data sources may

exist, possibly due to differences in scale or local landscape effects

on snow distribution.

Figure 5 shows scatter plots of USACE snow survey SWE versus

the AMSR‐E SWE for the pixel that contains each given USACE site.

Despite the generally good correspondence in the SWE time series,

there is a fair amount of scatter. The upper bound on the USACE snow

survey values is about 150 mm, whereas AMSR‐E has some higher

SWE values. For lower SWE conditions, AMSR‐E shows numerous

values of 0 mm despite a wide range of USACE values.

The summary statistics in Table 1 indicate that the bias (i.e., mean

signed difference, MSD) between the USACE and AMSR‐E SWE is

small, signifying good agreement between the estimates when the

data are considered as a whole. Additionally, the satellite variability is

similar to that from the point samples. However, there is a large root

mean squared difference (RMSD) between AMSR‐E and USACE SWE

estimates (34.7 mm overall). The mean absolute difference (MAD)

values are 10 mm lower than the RMSD values, reflecting the greater

observed bias for higher SWE values. Overall, the AMSR‐E SWE agrees

better with the weekly USACE SWE values than those from the annual

sites. However, the weekly and annual sites show no difference in

agreement with AMSR‐E SWE over an SWE range of approximately

30–110 mm. The annual USACE SWE data are often collected when

the snowpack is at its deepest, so the AMSR‐E versus weekly site sta-

tistics benefit from lower SWE values other parts of the winter, which

better agree with AMSR‐E observations. Much of the difference

between the microwave and in situ SWE can likely be attributed to

the large‐scale disparity between the two measurements and spatial



FIGURE 4 Time series plots of the U.S. Army
Corps of Engineers weekly survey sites
compared to the Advanced Microwave
Scanning Radiometer for the Earth Observing
System snow water equivalent (SWE) value
for the respective pixel that contains each site.
U.S. Army Corps of Engineers data are plotted
as black points, whereas the Advanced
Microwave Scanning Radiometer for the Earth
Observing System data are shown in grey
lines. From top to bottom, the plots show the
SWE values at the Baldhill Dam, Lac Qui Parle,
Orwell Dam, and Lake Traverse sites

0

50

100

150

2004 2006 2008 2010

S
W

E
 [m

m
]

Baldhill Dam

0

50

100

150

2004 2006 2008 2010

S
W

E
 [m

m
]

Lac Qui Parle

0

50

100

150

2004 2006 2008 2010

S
W

E
 [m

m
]

Orwell Dam

0

50

100

150

2004 2006 2008 2010

S
W

E
 [m

m
]

Lake Traverse

FIGURE 5 Plot of U.S. Army Corps of Engineers (USACE) ground
snow survey snow water equivalent (SWE) versus Advanced
Microwave Scanning Radiometer for the Earth Observing System
(AMSR‐E) SWE for the pixel that contains the given survey site. Annual
survey sites are plotted in grey, whereas the four weekly survey sites
are each plotted with a different colour and symbol. The black dotted
line indicates 1:1 agreement
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variability in snow cover, because the USACE data are essentially point

data, whereas the AMSR‐E footprint is 625 km2. Although there is not

adequate USACE sampling to quantify the effect of that spatial hetero-

geneity within a single AMSR‐E pixel footprint, previous studies clearly
indicate large within‐footprint variability (e.g., Clark et al., 2011). In an

attempt to quantify this heterogeneity error, we conducted a simula-

tion experiment to quantify the effect of small‐scale heterogeneity

on an otherwise perfect measurement. When a normally distributed

random error with a standard deviation of 25 mm was added to the

AMSR‐E data, the resulting RMSD between unaltered AMSR‐E SWE

and AMSR‐E SWE with added random error was 23 mm. This indicates

that approximately 44% of the mean squared difference (MSD) is

potentially due to subpixel‐scale spatial heterogeneity, rather than

measurement error in either data source. However, the method used

by the USACE, that is, to collect four SWE samples at each site and

report the mean, may somewhat reduce the contribution of micro‐

scale heterogeneity to the observed RMSD. An analogous simulation

analysis, where four replicates with random error were averaged

together then compared back to the AMSR‐E data, indicated RMSD

values of 12 mm due to subgrid‐scale variability (which accounts for

12% of the MSD). Subgrid‐scale spatial variability of SWE is further

discussed in Section 6.2.
5.2 | AMSR‐E versus OWP gamma SWE

Figure 6 shows a scatter plot of OWP gamma survey SWE for each

OWP flight line versus the weighted average AMSR‐E SWE within

the given flight line. The AMSR‐E SWE appears to have a greater range

over the winter than the gamma SWE. It is expected that SWE will

generally increase throughout the winter, before melting in the spring

(e.g., Figures 3 and 4). If the AMSR‐E and gamma estimates detected

this behaviour equally, then the points would generally increase along

the 1:1 line as a function of DOWY. However, in Figure 6, the AMSR‐E

SWE appears to increase more as a function of DOWY than the OWP



TABLE 1 Agreement between USACE and AMSR‐E SWE

Time period n SWEA (mm) SWEU (mm) sA (mm) sU (mm) MSD (mm) MAD (mm) RMSD (mm) a b (mm) R2 τ

All 1172 53.3 57.1 39.1 38.0 −3.8 26.2 34.7 0.62 18.2 0.36 0.46

Annual 702 69.8 71.6 34.2 32.3 −1.7 31.3 38.6 0.34 45.0 0.11 0.23

Weekly 470 28.7 35.5 32.4 35.6 −6.8 18.7 27.9 0.62 6.6 0.47 0.58

Baldhill 151 33.1 45.7 31.9 37.3 −12.7 19.4 29.2 0.62 4.9 0.51 0.59

LQP 122 24.8 22.6 32.4 33.0 2.2 16.7 27.4 0.64 10.4 0.42 0.59

Orwell 76 28 33.6 30.8 29.5 −5.6 18.8 27.4 0.63 7.0 0.36 0.54

Traverse 121 27.5 36.8 33.6 35.7 −9.3 19.5 27.1 0.69 2.2 0.53 0.56

Note. USACE = U.S. Army Corps of Engineers; AMSR‐E = Advanced Microwave Scanning Radiometer for the Earth Observing System; SWE = snow water
equivalent; n = number of observations; SWEA = mean AMSR‐E SWE; SWEU = mean USACE SWE; sA = standard deviation of AMSR‐E SWE; sU = standard
deviation of USACE SWE;MSD = mean signed difference between AMSR‐E and USACE SWE;MAD = mean absolute difference; RMSD = root mean squared
difference; a = slope of linear regression between AMSR‐E and USACE SWE; b = y‐intercept of linear regression; R2 = coefficient of determination;
τ = Kendall's rank correlation coefficient.

FIGURE 6 Plots of Office of Water Prediction gamma snow water
equivalent (SWE) versus weighted‐average Advanced Microwave
Scanning Radiometer for the Earth Observing System (AMSR‐E) SWE
within the given flight line footprint. The points are coloured by day of
water year (DOWY; i.e., day of year starting on October 1—Day 93 is
January 1). The dotted black line “indicates 1:1 agreement
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gamma SWE, as the DOWY colouring moves generally upward along

the AMSR‐E axis. This could potentially indicate that the AMSR‐E

SWE algorithm does not adjust enough to the changing snow grain size

and density as the snowpack metamorphoses over the course of the

winter. A cyclical pattern is also evident in Figure 6, the SWE increases

slowly from December to February but decreases quickly in March

(blue points), presumably due to the spring melt. There seems to be

some hysteresis in this pattern, as most of the dark blue points fall at

the right‐hand edge of the point cloud, indicating that the OWP

gamma estimate is higher than the AMSR‐E estimate as the snowpack

decreases in late winter to spring.

There is also a large amount of the data below the 1:1 line, indicat-

ing that the AMSR‐E estimates were often low compared to the OWP

gamma estimates. This pattern could potentially stem from a handful

of factors. First, the snowpack or ground surface could be wet, which
depresses the AMSR‐E SWE estimate but does not affect the OWP

estimate (Carroll & Carroll, 1989; Stiles & Ulaby, 1980). Kelly and Chang

(2003) noted a similar hysteresis pattern between in situ snow depth

and brightness temperature difference between 19 and 37 GHz bright-

ness temperatures (vertical polarization), which the authors attributed

to liquid water in the snowpack. Second, the fall soil moisture estimate

necessary to calculate SWE using the OWP gamma method could be

too low, resulting in an increased SWE estimate. Third, the OWP

gamma measurement could detect snowmelt‐derived liquid water that

has percolated into the upper soil during the winter (i.e., increased soil

moisture compared to the fall soil moisture estimate), which could lead

to an overestimation of SWE (Peck et al., 1980), or even a non‐zero

SWE value when there is no snowpack. However, it is difficult to deter-

mine which factor is most responsible for disagreement in SWE due to

observation limitations. MODIS imagery could help to determine snow

cover versus bare ground conditions, but clouds often obscure view of

the ground and melting can occur quickly. Independent observations of

snowwetness in this region are non‐existent and few shallow soil mois-

ture measurements exist.

Figure 7 shows the same data from Figure 6, but separated by

winter. In this context, it is apparent that the gamma estimates are

clustered in time (i.e., by “campaign”). Each campaign shows consistent

behaviour, but the agreement between the AMSR‐E and OWP gamma

SWEestimates varies greatly, with some campaigns falling approximately

along the 1:1 line, and some deviating far from it (e.g., yellow and cyan

points in winter 2006–2007). This again highlights the importance of

snow and soil moisture conditions on the agreement between the SWE

estimates, because the effect of wet snow on AMSR‐E SWE or the

effect of an inaccurate soil moisture estimate on OWP gamma SWE

could each lead to large differences in agreement across different gamma

campaigns. Variability in atmospheric conditions or radon concentrations

(Peck et al., 1980) might also partly explain this clustering behaviour.

Table 2 presents agreement statistics between the AMSR‐E and

gamma SWE estimates, both overall and by month. Overall, the agree-

ment is weaker than in the USACE snow survey comparison (Table 1).

There is a large bias in all months except February and March. The

MAD and RMSD are considerably higher for the gamma comparison

than for the USACE snow surveys (Table 1) despite the larger areal

footprint of the gamma observations.
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FIGURE 7 Same as Figure 6, but plotted individually by water year (i.e., water year 2003 encompasses winter 2002–2003). Office of Water
Prediction observations are often collected for multiple flight lines in a short time period (i.e., grouped into “campaigns” that last only a few
days). SWE = snow water equivalent; AMSR‐E = Advanced Microwave Scanning Radiometer for the Earth Observing System

TABLE 2 Agreement between OWP gamma and AMSR‐E SWE

Time period n SWEA (mm) SWEG(mm) sA (mm) sG (mm) MSD (mm) MAD (mm) RMSD (mm) a b (mm) R2 τ

All 2131 68.5 78.0 40.9 31.4 −9.5 34.0 42.7 0.47 32.0 0.13 0.24

Dec. 65 14.9 33.3 8.5 45.3 −18.5 20.6 48.3 0.02 14.0 0.02 0.38

Jan. 386 46.9 70.6 26.7 28.3 −23.6 31.8 38.1 0.39 19.6 0.17 0.29

Feb 940 77.7 81.2 36.0 30.5 −3.5 32.8 40.3 0.33 51.1 0.08 0.16

Mar. 592 79.8 81.4 44.7 29.7 −1.6 35.6 46.3 0.42 46.0 0.08 0.16

Apr. 147 45.1 83.2 44.1 24.6 −38.1 46.3 50.6 1.19 −53.6 0.44 0.47

May 1 16 50.8 ‐ ‐ −34.8 34.8 34.8 ‐ ‐ ‐ ‐

Note. Columns are identical toTable I, except that OWP gamma SWE (“G”) has replaced USACE SWE. OWP = Office of Water Prediction; SWE = snow water
equivalent; USACE = U.S. Army Corps of Engineers.
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For most OWP flight lines, fall soil moisture is measured using the

aircraft gamma instrument, but for others, it is derived from interpola-

tion between other measured flight lines, or estimated subjectively

from based on qualitative information or ground measurements. The

best agreement occurs when the fall soil moisture is measured

(MSD = −2.5 mm, MAD = 31.9 mm, and RMSD = 41.3 mm), rather than

interpolated from estimates (MSD = −16.4 mm, MAD = 35.2 mm, and
RMSD = 45.8 mm). However, good agreement also occurs when the fall

soil moisture is estimated subjectively or based on supplemental data

(MSD = −9.9 mm, MAD = 28.0 mm, and RMSD = 35.9 mm). These

results underscore that there is variability in soil moisture between

flight lines, and measuring fall soil moisture immediately before the

winter freeze‐up would help to obtain accurate SWE estimates, but

often logistical and operational realities do not make this possible.
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6 | DISCUSSION

6.1 | Comparison to other studies

Comparison between individual USACE ground survey SWE estimates

and AMSR‐E SWE from the encompassing pixel indicated a mean bias

(i.e., MSD) and RMSD of −3.8 and 34.7 mm, respectively. These values

are much higher than an early validation study between OWP gamma

and ground SWE estimates in the Upper Midwest (RMSE = 8.8 mm,

bias = +5.4 mm; Carroll & Schaake Jr, 1983). However, it is important

to note that the validation study involved exhaustive sampling of SWE

and snow depth, as well as vegetation water content measurements, so

agreement between single ground sites and OWP gamma estimates

might be less ideal (Barry Goodison, personal communication).

The agreement statistics from this study are similar to those found

in other analyses. Byun and Choi (2014) compared AMSR‐E SWE esti-

mates to SWE derived from in situ snow depth measurements multi-

plied by an assumed snow density of 0.275 g/cm3 (or a dynamic

density from Sturm et al., 2010). The authors found RMSE values rang-

ing between 4.03 and 57.56 mm for the months of December to

February for four sites (static density) and mean absolute error (MAE)

values from +1.08 (+0.60) to +35.18 (+37.75) mm (static and dynamic).

These values bracket the statistics found in this study, whereas R2

values are similar. Three of the four sites showed better agreement

than any of the USACE sites or monthly OWP gamma SWE in this

study, but these three sites had much lower in situ SWE (maximum

of 50–80 mm) than the sites from this study (maximum of 165 mm).

Tong and Velicogna (2010) compared AMSR‐E SWE to SWE derived

from in situ snow depth measurements multiplied by a regionally and

seasonally varying snow density for four winter seasons at six sites

(Brown, Derksen, & Wang, 2007). The authors found monthly MAE

values ranging between approximately 12 and 50 mm for December

through March. The MAE values from this study using USACE SWE fall

in the low to middle portion of this range, whereas OWP gamma SWE

MAE falls in the upper portion of the range. Yang et al. (2015) com-

pared AMSR‐E SWE to SWE derived from in situ snow depth measure-

ments across the Tibetan Plateau. They found an overall RMSE of

38.1 mm, with values of 36.6 and 25.6 mm for grassland and barren

areas, respectively. These values match closely with the RMSD found

in this study between USACE and AMSR‐E SWE.

Additionally, Mote et al. (2003) found biases between monthly

mean in situ and 1° SSM/I SWE of −20 to +7 mm at five stations in

the Northern Great Plains, using the Meteorological Service of Canada

satellite algorithm. The authors compared estimates at daily temporal

scale as well but did not report agreement statistics. Tekeli (2008)

found relative agreement of −78% to +218%, and an R2 of 0.10,

between 48 in situ snow courses and AMSR‐E estimates in eastern

Turkey. Derksen, Walker, and Goodison (2003) found seasonal mean

bias errors between 5‐day in situ and passive microwave SWE (Scan-

ning Multichannel Microwave Radiometer (SMMR) and SSM/I, Meteo-

rological Service of Canada algorithm) of 15 mm or less for 13 stations

in western Canada over 18 winters. Each of these studies highlighted

the tendency of satellite microwave SWE to underestimate in situ

SWE in early winter and overestimate in late winter. The authors noted

that mid‐winter melt events followed by snowpack refreeze led to
overestimation, presumably due to increased snow density (and grain

size). These studies also discussed the spatial scale difference between

in situ and SSM/I SWE, as well as spatial variability at point scales (for

which Schmidlin, Wilks, McKay, and Cember, 1995, found a coefficient

of variation of 0.125, resulting in SWE deviations of up to 25% from

the overall mean SWE for single point measurements).

The mean difference between AMSR‐E and OWP gamma SWE in

this study is −9.5 mm, and the RMSD is 42.7 mm. In the supposed

“best case scenario” (i.e., where the soil moisture for the OWP gamma

SWE estimates are from fall airborne gamma measurements), the mean

difference is low (−2.5 mm) but the RMSD is still higher than the

baseline AMSR‐E versus USACE snow survey comparison (41.3 vs.

34.7 mm, respectively). Although 12–44% of the AMSR‐E versus

USACE comparison error can likely be attributed to point‐scale hetero-

geneity, the spatial sampling error between AMSR‐E and OWP gamma

SWE is likely much smaller, due to the larger areal footprint of the

gamma estimates (5–7 km2). This suggests that there are errors pres-

ent in the OWP data that are not shared by the USACE data and that

outweigh the reduction in spatial sampling error gained from the

USACE to OWP scale. It is likely that a large portion of the error

between AMSR‐E and OWP gamma SWE is due to the soil moisture

assumptions that underlie the gamma estimates, which attempt to

compensate for the greater observation depth of the gamma

technique.
6.2 | Spatial variability in SWE

A portion of the difference between the AMSR‐E and USACE SWE

estimates can surely be attributed to the spatial variability of SWE,

because USACE SWE is estimated at a much smaller scale than the

25‐km resolution of AMSR‐E. Chang et al. (2005) noted that consider-

able variability in snow depth exists within the spatial scale of satellite

pixels in the Northern Great Plains and indicated that 10 measure-

ments were needed within a 1° pixel in order to obtain an accuracy

of 5 cm between SSM/I satellite and ground snow depth estimates.

Dong et al. (2005) compared SMMR‐derived 0.5° SWE to SWE derived

from in situ snow depth measurements across Canada and found that

SMMR pixels with five or more ground stations were generally unbi-

ased with a median RMSE of 20 mm or less throughout each month

of the winter, after screening for water body proximity, high air tem-

perature, and high SWE values. The authors also found the lowest

errors in the prairie snow class (from Sturm, Holmgren, & Liston,

1995), which is the dominant snow class of the study area for this anal-

ysis. However, the spatial density of in situ SWE measurement sites in

the region of this study is not sufficient to similarly characterize SWE

variability within individual 25‐km resolution AMSR‐E pixels. Chang

and Rango (2000), using an equation from Snedecor and Cochran

(1967), indicated that there is 95% confidence that the true mean of

a pixel is within ±40 mm of the observed mean at a point, if the point

SWE standard deviation is 20 mm and there is only one measurement

point within a given pixel.

Most studies of SWE spatial variability using ground measure-

ments have taken place at much smaller scales, up to 1 km2 (Clark et al.,

2011), due to the cost and effort required to conduct field surveys at

larger scales. Notably, Watson, Anderson, Newman, Alexander, and
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Garrott (2006) found that random SWE variation was common at small

spatial scales (i.e., <10 m), but decreased to effectively zero at dis-

tances of 100 to 1,000 m. This supports the USACE technique of gath-

ering multiple SWE samples in a small area and averaging to provide a

single SWE estimate, as this method should mitigate point‐scale ran-

dom SWE variability. Vander Jagt, Durand, Margulis, Kim, and Molotch

(2013) found that passive microwave brightness temperatures are sen-

sitive to the mean snow depth within the sensor footprint, despite het-

erogeneity in snow properties, up to a scale of 1 km2. So, as long as

SWE measurement sites are altogether representative of the mean

SWE within the pixel, there should be agreement between the ground

and remote estimates. Meromy, Molotch, Link, Fassnacht, and Rice

(2013) examined snow stations in the Western United States and

found that over 50% of ground‐based SWE measurement stations

were within 10% of the mean SWE magnitude of the surrounding

1 km2 (found using field surveys).

Multiple studies have found that SWE magnitude is related to

physical properties of the land surface (such as elevation, slope, aspect,

and vegetation type; Clark et al., 2011), which can partly explain SWE

variability at large scales. Thus, landscapes with fewer changes in phys-

ical characteristics will presumably have lower SWE variability at large

scales. This is encouraging for the Northern Great Plains, because

topographic relief and vegetation cover are low, so there should not

be much change in snow type. However, drifting of snow is significant

in the region (Cork & Loijens, 1980; Pomeroy, Gray, & Landine, 1993),

and the presence of vegetation, raised roads, fences, and shelter belts

(which catch wind‐blown snow) could create systematic SWE patterns

that might not be captured by the USACE data.

Airborne gamma radiation estimates obtain SWE estimates over

larger areas than the USACE sites and thus will average over some sys-

tematic SWE patterns. However, SWE spatial variability could similarly

affect the AMSR‐E versus OWP gamma comparison. The OWP flight

lines often comprise parts of multiple AMSR‐E pixels (Figure 1), so in

order to compare the two SWE data sources, the weighted mean

AMSR‐E SWE was found for the footprint of the given flight line. How-

ever, it is possible that the portion of the AMSR‐E pixels within the

flight line footprint is not representative of the AMSR‐E pixel as a

whole, thus introducing error into the comparison. It is unclear how

to best quantify this error given the currently available SWE data,

because the airborne gamma data, unlike the USACE SWE sites, are

not neatly contained within one AMSR‐E pixel. Coordinated field cam-

paigns would enable better characterization of SWE spatial variability

within the satellite footprints in the Northern Great Plains, both at

the point and flight line scales.
7 | CONCLUSION

Although SWE in the Northern Great Plains area has been studied in

the past, especially during the development of passive microwave

and gamma radiation methods in the 1970s and 1980s, greater spatial

coverage of accurate SWE data is needed for operational flood fore-

casting. The OWP gamma radiation snow survey program provides a

vital data set of SWE measurements over this area, but each flight line

is only measured a maximum of four times per winter (and usually only
once or twice). High‐quality in situ measurements of SWE are sparse,

and only a handful of sites collect measurements on a daily basis in

the Northern Great Plains. For this reason, accurate determination of

SWE for operational flood forecasting purposes remains difficult.

Satellite passive microwave observations have the potential to fill this

knowledge gap for large scales and daily frequency.

AMSR‐E passive microwave and USACE snow survey SWE obser-

vations in the Northern Great Plains agree with a bias and RMSD of

−3.8 and 34.7 mm, respectively. A simulation analysis suggests that

small‐scale variability in SWE accounts for 12–44% of the observed

error between AMSR‐E and USACE SWE observations, depending on

whether or not USACE observations are considered a single point mea-

surement or the mean of four points. Given this, we estimate the max-

imum achievable RMSD between in situ and operational satellite SWE

is approximately 26–33 mm in the Northern Great Plains. By collecting

five in situ measurements within a single satellite pixel, the error due to

small‐scale variability can be decreased by approximately 80% (as com-

pared to only one measurement per pixel), whereas collecting 10 in situ

measurements leads to an additional 10% decrease in error.

AMSR‐E SWE shows poorer agreement with OWP gamma SWE

than with USACE ground survey SWE, despite the much larger mea-

surement footprint of the former observation method. For this reason,

gamma SWE estimates should be used in concert with other SWE

measurements, such as in situ or satellite measurements, rather than

in isolation. The greater penetration depth of the gamma radiation

method provides slightly different information than either the passive

microwave or manual sampling methods, which may provide useful

hydrological context. However, SWE estimation from airborne gamma

radiation measurements requires multiple assumptions (e.g., soil mois-

ture content in the upper soil) that can result in significant errors, so it

is important to accurately characterize the environmental conditions

that contribute to these error sources.

In summary, our analyses indicate that satellite estimates agree

with in situ and airborne gamma SWE estimates with mean differences

of less than 10mm and RMSDs of approximately 40mm or less, despite

the large disparity in spatial scale of the observations. However, more

study and algorithm development is needed in order to better identify

and account for changes in snow morphology and exclude satellite

observations affected by the presence of liquid water (and potentially

dense cloud cover). These uncertainties highlight the need for coordi-

nated campaigns in the region, in order to address issues of scaling

between different observations and better characterize snowmorphol-

ogy at large scales. Additionally, any future satellite campaigns (e.g.,

NASA SNOWEx in 2019–2021) to measure SWEwill require validation

at large scales (i.e., close to 25‐km resolution), which will ideally entail

continuous SWE measurement at denser resolution than is currently

available. Satellite SWE missions could draw from the experience of

the soil moisture community in order to establish such validation sites.
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